27 research outputs found

    Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond

    Full text link

    Expanding the utility of proteases in synthesis: broadening the substrate acceptance in non-coded amide bond formation using chemically modified mutants of subtilisin

    No full text
    The strategy of combined site directed mutagenesis and chemical modification creates chemically modified mutants (CMMs) with greatly broadened substrate specificities. We have previously reported that the CMMs of subtilisin Bacillus lentus (SBL) are efficient catalysts for the coupling of both L- and D-amino acids. We now report that these powerful catalysts also allow amide bond formation between a variety of non-coded carboxylic acids, including β-alanine and β-amino homologues of phenylalanine, with both L- and D-amino acid nucleophiles. As a guide to enzyme efficiency, a hydrolysis assay indicating pH change has been employed. CMMs selected by this screen furnished higher yields of coupling products compared to the wild-type enzyme (WT). Furthermore, both WT and CMM enzymes allow highly stereoselective aminolysis of a meso diester with an amino acid amine. These results highlight the utility of CMMs in the efficient formation of non-coded amides as potential peptide isosteres. © 2001 Published by Elsevier Science Ltd

    Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites.

    No full text
    The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have recently adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). We now describe the use of this strategy to introduce multiple positive charges. A series of mono-, di- and triammonium methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutants (CMM) enzymes were determined at pH 8.6. The presence of up to three positive charges in the S1, S1' and S2 subsites of SBL resulted in up to 77-fold lowered activity, possibly due to interference with the histidinium ion formed in the transition state of the hydrolytic reactions catalyzed

    Selective protein degradation by ligand-targeted enzymes: towards the creation of catalytic antagonists

    No full text
    Molecular angler fish: By precisely positioning different binding ligands (L) around the active site “mouth” of a degradative proteinase enzyme, target proteins (TP) can be plucked from solution, locked in position adjacent to the catalytic triad “jaws”, and in this way readily and specifically degraded (see scheme). In this strategy, the appropriate ligand acts as a homing device to confer and enhance selectivity, in the best case by more than 350-fold, in a generic process that exploits the intrinsic, ligand-recognition capabilities of the protein target to trigger its own destruction. The hunting strategy of the deep sea Angler Fish, which uses a lure above its mouth, illustrates this principle
    corecore