117 research outputs found

    Personalized emotion recognition by personality-aware high-order learning of physiological signals

    Get PDF
    Due to the subjective responses of different subjects to physical stimuli, emotion recognition methodologies from physiological signals are increasingly becoming personalized. Existing works mainly focused on modeling the involved physiological corpus of each subject, without considering the psychological factors, such as interest and personality. The latent correlation among different subjects has also been rarely examined. In this article, we propose to investigate the influence of personality on emotional behavior in a hypergraph learning framework. Assuming that each vertex is a compound tuple (subject, stimuli), multi-modal hyper-graphs can be constructed based on the personality correlation among different subjects and on the physiological correlation among corresponding stimuli. To reveal the different importance of vertices, hyperedges, and modalities, we learn the weights for each of them. As the hypergraphs connect different subjects on the compound vertices, the emotions of multiple subjects can be simultaneously recognized. In this way, the constructed hypergraphs are vertex-weighted multi-modal multi-task ones. The estimated factors, referred to as emotion relevance, are employed for emotion recognition. We carry out extensive experiments on the ASCERTAIN dataset and the results demonstrate the superiority of the proposed method, as compared to the state-of-the-art emotion recognition approaches

    Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems

    Get PDF
    BACKGROUND: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. RESULTS: We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. CONCLUSIONS: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly

    A global wiring paradigm for deep submicron design

    No full text
    • …
    corecore