26 research outputs found

    Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator

    Get PDF
    Sensory systems experience a trade-off between maximizing the detail and amount of sampled information. Thistrade-off is particularly pronounced in sensorysystemsthat are highlyspecialised fora single task and thus experience limitations in other tasks. We hypothesised that combining sensory input from multiple streams of information may resolve this trade-off and improve detection and sensing reliability. Specifically, we predicted that perceptive limitations experienced by animals reliant on specialised active echolocation can be compensated for by the phylogenetically older and less specialised process of passive hearing. We tested this hypothesis in greater horseshoe bats, which possess morphological and neural specialisations allowing them to identify fluttering prey in dense vegetation using echolocation only. At the same time, their echolocation system is both spatially and temporally severely limited. Here, we show that greater horseshoe bats employ passive hearing to initially detect and localise prey-generated and other environmental sounds, and then raise vocalisation level and concentrate the scanning movements of their sonar beam on the sound source for further investigation with echolocation. These specialised echolocators thus supplement echo-acoustic information with environmental acoustic cues, enlarging perceived space beyond their biosonar range. Contrary to our predictions, we did not find consistent preferences for prey-related acoustic stimuli, indicating the use of passive acoustic cues also for detection of non-prey objects. Our findings suggest that even specialised echolocators exploit a wide range of environmental information, and that phylogenetically older sensory systems can support the evolution of sensory specialisations by compensating for their limitations

    Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; A new tumor cell model of ganglioside function

    No full text
    Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function

    Gangliosides

    No full text
    corecore