33 research outputs found

    Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices

    Full text link
    The integrable loop model with mixed boundary conditions based on the 1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered. The corresponding qKZ equation is introduced and its minimal degree solution described. As a result, the sum of the properly normalized components of the ground state in size L is computed and shown to be equal to the number of Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A refined counting is also considered

    Generalized Calogero-Moser systems from rational Cherednik algebras

    Get PDF
    We consider ideals of polynomials vanishing on the W-orbits of the intersections of mirrors of a finite reflection group W. We determine all such ideals which are invariant under the action of the corresponding rational Cherednik algebra hence form submodules in the polynomial module. We show that a quantum integrable system can be defined for every such ideal for a real reflection group W. This leads to known and new integrable systems of Calogero-Moser type which we explicitly specify. In the case of classical Coxeter groups we also obtain generalized Calogero-Moser systems with added quadratic potential.Comment: 36 pages; the main change is an improvement of section 7 so that it now deals with an arbitrary complex reflection group; Selecta Math, 201

    Spin chains with dynamical lattice supersymmetry

    Full text link
    Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the N=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension admits a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.Comment: Revised version, 52 pages, 2 figure

    Exact finite size groundstate of the O(n=1) loop model with open boundaries

    Full text link
    We explicitly describe certain components of the finite size groundstate of the inhomogeneous transfer matrix of the O(n=1) loop model on a strip with non-trivial boundaries on both sides. In addition we compute explicitly the groundstate normalisation which is given as a product of four symplectic characters.Comment: 29 pages, 33 eps figures, major revisio

    Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs (001)

    Get PDF
    As a fundamental parameter in magnetism, the phenomenological Gilbert damping constant a determines the performance of many spintronic devices. For most magnetic materials, a is treated as an isotropic parameter entering the Landau-Lifshitz-Gilbert equation. However, could the Gilbert damping be anisotropic? Although several theoretical approaches have suggested that anisotropic a could appear in single-crystalline bulk systems, experimental evidence of its existence is scarce. Here, we report the emergence of anisotropic magnetic damping by exploring a quasi-two-dimensional single-crystalline ferromagnetic metal/semiconductor interface-that is, a Fe/GaAs(001) heterojunction. The observed anisotropic damping shows twofold C-2v symmetry, which is expected from the interplay of interfacial Rashba and Dresselhaus spin-orbit interaction, and is manifested by the anisotropic density of states at the Fe/GaAs (001) interface. This discovery of anisotropic damping will enrich the understanding of magnetization relaxation mechanisms and can provide a route towards the search for anisotropic damping at other ferromagnetic metal/semiconductor interfaces
    corecore