57 research outputs found
Unravelling the Impact of Human Papillomavirus (HPV): A Comprehensive Exploration of its Role in Cancer Progression and Global Health Challenges
HPV represents a large group of double stranded DNA viruses that are highly involved with different types of human cancers. This synopsis describes the complexities surrounding HPV virology, classifications, and genomic variation, especially focusing on high-risk strains such as HPV16 and HPV18, the main causative factors for cervical cancers. The International Committee on Taxonomy of Viruses specifies more than 200 HPV types each associated with a respective disease and indicated in Table 1. HPV spread is mostly due to direct skin-to-skin contact between individuals’ sex organs causing infections on the mucous membrane and keratinized epithelial cells. Although majority of the infections are asymptomatic, some chronic HRHPV infections may progress into cancers because of oncoproteins E6 and E7. The high-risk variants of HPV lead to cervical, anal, and oropharyngeal cancers whereas the low-risk types cause harmless genital warts. While integrating HPV DNA into the host genome, orchestrated by oncoproteins E6 and E7 disrupts the cell regulatory mechanism; this leads to abnormal control over cell multiplication–one of the major elements of the process that develops to HPV induced cancer. A classic case is cervical cancer that has been extensively investigated as one of the highly documented HPV associated malignancies. Pap smears and HPV DNA tests are among the screening means that lower the incidents and deaths associated with cervical cancers. HPV-associated cancers of the head and neck, anus, penis, vulva, and vagina all show a characteristic profile in terms of the pathogen aetiology and risks involved. HPV-related head and neck cancers affect non-smokers and show good response to standard therapies. HPV poses increased anal cancer risk for immunocompromised individuals highlighting the complexity of interdependence of immunity and cancer development. Penile cancer results from poor hygiene and non-circumcision. Vulvar and virginal cancer mostly affects women, and the risk factors involve HPV infection and smoking. Therefore, various types of multidisciplinary approach that may include surgeries, radiotherapy, and chemotherapy are necessary to ensure proper treatment. Certain cancers are strongly associated with some high-risk HPV genotypes, such as HPV-16 and HPV-18; thus, vaccination is important. HPV infection outcomes are determined by the immune response as well as clearance of HPV infection. Screening and immunological understanding for early detection of HPV related health risks is fundamental. However, this encompassing review highlights the multi-dimensional impact of HPV encompassing virology of HPV, cancer specific presentation of HPV and control including prevention of HPV infection, screening, and research on cancer attributable by HPV and strategies towards mitigation of this global health problem
Exploring the Pharmacological Potential of Naringenin and its Nanoparticles: A Review on Bioavailability and Solubility Enhancement Strategies
Citrus fruits are rich in differentflavonoid compounds. One of them is naringenin, which exhibits a huge variety of pharmacological benefits such as anti-inflammatory, antioxidant, anticancer, and cardioprotective properties. Butpoor bioavailability and solubility are the main reason for its limited clinical application. To overcome these limitations, several strategies, including complexation, formulation, and nanotechnology-based approaches, have been developed to boost its solubility and bioavailability.Among these approaches, nanoparticle-based delivery systems have shown remarkable potential in improving the therapeutic efficacy of naringenin. This review is based on the recent advances in the development of naringenin nanoparticles and their incorporation into drug delivery systems. We discuss over the numerous methods used to make naringenin more soluble and bioavailable, such as complexing it with cyclodextrins, combining it with lipids and surfactants, and adding it to polymeric nanoparticles. We also highlight the In-vivo and In-vitro studies conducted to check the efficacy of naringenin nanoparticles in various disease models. Finally, we conclude that the development of naringenin nanoparticles and their incorporation into drug delivery systems can be a promising strategy for the efficient delivery of naringenin, ultimately leading to improved health outcomes
Exploring Herbal Remedies for Anti-Leishmanial Activity: A Comprehensive Review
- Leishmaniasis remains a serious neglected illness worldwide, posing significant challenges in its treatment due to the side effects of existing medications and the rising cases of parasite resistance resulting from indiscriminate treatment. To address this issue, exploring complementary remedies using natural products presents a promising option by combining the empirical knowledge of local populations with scientific research on the medicinal properties of plants. Several studies have investigated herbal treatments for leishmaniasis; however, more research is needed to identify safe and non-toxic remedies. To consolidate the latest findings, researchers from around the globe have compiled a comprehensive article on herbal and organic medicines used to treat leishmaniasis. While many medicinal plants have not been extensively studied, promising candidates have undergone prospective clinical trials. Recent articles have explored the active constituents of these medicinal plants, such as quinones, phenolic compounds, lignans, tannins, terpenes, and oxylipins, shedding light on their potential therapeutic benefits. Pharmacognosy views medicinal plants as valuable sources for developing novel medications and supporting traditional therapies, offering a practical approach to managing various illnesses. In summary, harnessing the power of natural goods and integrating traditional knowledge with scientific research provides a viable and desirable strategy to combat leishmaniasis, promoting safer and more effective treatment options in the future
Maximization of propylene in an industrial FCC unit
YesThe FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%
Anaemia in the Premature Infant and Red Blood Cell Transfusion: New Approaches to an Age-Old Problem
Exploring the Pharmacological Potential of Naringenin and its Nanoparticles: A Review on Bioavailability and Solubility Enhancement Strategies
Citrus fruits are rich in differentflavonoid compounds. One of them is naringenin, which exhibits a huge variety of pharmacological benefits such as anti-inflammatory, antioxidant, anticancer, and cardioprotective properties. Butpoor bioavailability and solubility are the main reason for its limited clinical application. To overcome these limitations, several strategies, including complexation, formulation, and nanotechnology-based approaches, have been developed to boost its solubility and bioavailability.Among these approaches, nanoparticle-based delivery systems have shown remarkable potential in improving the therapeutic efficacy of naringenin. This review is based on the recent advances in the development of naringenin nanoparticles and their incorporation into drug delivery systems. We discuss over the numerous methods used to make naringenin more soluble and bioavailable, such as complexing it with cyclodextrins, combining it with lipids and surfactants, and adding it to polymeric nanoparticles. We also highlight the In-vivo and In-vitro studies conducted to check the efficacy of naringenin nanoparticles in various disease models. Finally, we conclude that the development of naringenin nanoparticles and their incorporation into drug delivery systems can be a promising strategy for the efficient delivery of naringenin, ultimately leading to improved health outcomes
Chronic overexpression of cerebral Epo improves the ventilatory response to acute hypoxia during the postnatal development
Clinicians observed that the treatment of premature human newborns for anemia with erythropoietin (Epo) also improved their respiratory autonomy. This observation is in line with our previous in vitro studies showing that acute and chronic Epo stimulation enhances fictive breathing of brainstem-spinal cord preparations of postnatal day 3-4 mice during hypoxia. Furthermore, we recently reported that the antagonization of the cerebral Epo (by using the soluble Epo receptor; sEpoR) significantly reduced the basal ventilation and the hypoxic ventilatory response of 10 days old mice. In this study, we used transgenic (Tg21) mice to investigate the effect of the chronic cerebral Epo overexpression on the modulation of the normoxic and hypoxic ventilatory drive during the post-natal development. Ventilation was evaluated by whole body plethysmography at postnatal ages 3 (P3), 7 (P7), 15 (P15) and 21 (P21). In addition Epo quantification was performed by RIA and mRNA EpoR was evaluated by qRT-PCR. Our results showed that compared to control animals the chronic Epo overexpression stimulates the hypoxic (but not the normoxic) ventilation assessed as VE/VO2 at the ages of P3 and P21. More interestingly, we observed that at P7 and P15 the chronic Epo stimulation of ventilation was attenuated by the down regulation of the Epo receptor in brainstem areas. We conclude that Epo, by stimulating ventilation in brainstem areas crucially helps tolerating physiological (e.g., high altitude) and/or pathological (e.g., respiratory disorders, prematurity, etc.) oxygen deprivation at postnatal ages
Anti-inflammatory actions of endogenous and exogenous interleukin-10 versus glucocorticoids on macrophage functions of the newly born
OBJECTIVE: To determine whether specific macrophage immune functions of the newly born are insensitive to the actions of therapeutic levels of dexamethasone (DEX), previously measured in infants with bronchopulmonary dysplasia (BPD), compared with betamethasone (BETA) and exogenous or endogenous interleukin-10 (IL-10). STUDY DESIGN: Macrophages were differentiated from cord blood monocytes (N=18). A serial dose-response (around 10(-8)M), in vitro study was used to examine the effect of DEX, BETA and IL-10, on proinflammatory (PI) cytokine release, phagocytosis and respiratory burst. RESULT: Exogenous IL-10 (10(-8)M) significantly (P \u3c 0.05) inhibited the endotoxin-stimulated release of IL-6, IL-8 and tumor necrosis factor by 63 to 82% with no significant effect by DEX and BETA. There was no inhibition by these three agents at 10(-8)M on phagocytosis and respiratory burst. Inhibition of endogenous IL-10 with a monoclonal antibody significantly increased endotoxin-stimulated cytokine release by at least fourfold. CONCLUSION: Macrophages were relatively insensitive to therapeutic levels of DEX and BETA with regard to PI cytokine release. This study provides rationale for translational and preclinical research using airway instillation of IL-10 for the treatment of BPD
- …