20 research outputs found

    Hydroxybenzothiazoles as New Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1)

    Get PDF
    17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics

    Massive haemorrhage of the anterior part of the neck

    No full text

    Gene expression in macrophage-rich inflammatory cell infiltrates in human atherosclerotic lesions as studied by laser microdissection and DNA array

    No full text
    Objective- Inflammatory cells play an important role in atherogenesis. However, more information is needed about their gene expression profiles in human lesions. Methods and Results— We used laser microdissection (LMD) to isolate macrophage-rich shoulder areas from human lesions. Gene expression profiles in isolated cells were analyzed by cDNA array and compared with expression patterns in normal intima and THP-1 macrophages. Upregulation of 72 genes was detected with LMD and included 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, interferon regulatory factor-5 (IRF-5), colony stimulating factor (CSF) receptors, CD11a/CD18 integrins, interleukin receptors, CD43, calmodulin, nitric oxide synthase (NOS), and extracellular superoxide dismutase (SOD). Several of these changes were also present in PMA-stimulated THP-1 macrophages in vitro. On the other hand, expression of several genes, such as VEGF, tissue factor pathway inhibitor 2, and apolipoproteins C-I and C-II, decreased. Conclusions— Overexpression of HMG-CoA reductase in macrophage-rich lesion areas may explain some beneficial effects of statins, which can also modulate increased expression of CD11a/CD18 and CD43 found in microdissected cells. We also found increased expression of CSF receptors, IRF-5, and interleukin receptors, which could become useful therapeutic targets for the treatment of atherosclerotic diseases
    corecore