37 research outputs found

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients

    Synaptic dysregulation in a human iPS cell model of mental disorders

    No full text
    Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders(1), and ‘a disease of synapses’ is the major hypothesis for the biological basis of schizophrenia(2). Although this hypothesis has gained indirect support from human post-mortem brain analyses(2–4) and genetic studies(5–10), little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes(11). Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders(12) and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders
    corecore