800 research outputs found
Microplastic Concentrations in \u3ci\u3eCrassotrea gigas\u3c/i\u3e: Establishing a Baseline of Microplastic Contamination in Oregon\u27s Oyster Aquacultures
Anthropogenic debris is “found across all habitats in the ocean, including coral reefs, shallow bays, estuaries, the open ocean, and the deep sea” (Rochman et al., 2015). Microplastic pollution is widespread in the marine environment and poses a threat to a variety of organisms, including commercial shellfish grown for human consumption. The aim of this study is to establish a baseline of microplastic evidence in Oregon through the examination of Crassotrea gigas--or the Pacific Oyster. In addition it hopes to determine if there are differences in microplastic concentration geographically and temporally. Five oyster samples were collected in Spring 2017 from a total of six sites, three Northern and three Southern to establish a geographic range of XXXX Pacific oyster aquacultures. Another five oyster samples were collected from a single Northern site during Summer 2017 to address temporal variation. Microplastics were extracted using a 10% KOH solution and identified under a dissecting microscope. The research suggests that there is no significance difference geographically or temporally. However, the study does establish the uptake of microfibers by Pacific oysters, which could not only harm the organism, but raises concern for human consumption
Particle creation by moving spherical shell in the dynamical Casimir effect
The creation of massless scalar particles from the quantum vacuum by
spherical shell with time varying radius is studied. In the general case of
motion the equations are derived for the instantaneous basis expansion
coefficients. The examples are considered when the mean number of particles can
be explicitly evaluated in the adiabatic approximation.Comment: 9 pages, LaTeX, no figures, typos corrected, discussion added.
Journal-ref adde
Wigner Molecules in Nanostructures
The one-- and two-- particle densities of up to four interacting electrons
with spin, confined within a quasi one--dimensional ``quantum dot'' are
calculated by numerical diagonalization. The transition from a dense
homogeneous charge distribution to a dilute localized Wigner--type electron
arrangement is investigated. The influence of the long range part of the
Coulomb interaction is studied. When the interaction is exponentially cut off
the ``crystallized'' Wigner molecule is destroyed in favor of an inhomogeneous
charge distribution similar to a charge density wave .Comment: 10 pages (excl. Figures), Figures available on request LaTe
Signatures of electron correlations in the transport properties of quantum dots
The transition matrix elements between the correlated and
electron states of a quantum dot are calculated by numerical diagonalization.
They are the central ingredient for the linear and non--linear transport
properties which we compute using a rate equation. The experimentally observed
variations in the heights of the linear conductance peaks can be explained. The
knowledge of the matrix elements as well as the stationary populations of the
states allows to assign the features observed in the non--linear transport
spectroscopy to certain transition and contains valuable information about the
correlated electron states.Comment: 4 pages (revtex,27kB) + 3 figures in one file ziped and uuencoded
(postscript,33kB), to appear in Phys.Rev.B as Rapid Communicatio
Recommended from our members
Modeling the impediment of methane ebullition bubbles by seasonal lake ice
Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominates annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes
Recommended from our members
Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska
Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis
Particle creation in an oscillating spherical cavity
We study the creation of massless scalar particles from the quantum vacuum
due to the dynamical Casimir effect by spherical shell with oscillating radius.
In the case of a small amplitude of the oscillation, to solve the infinite set
of coupled differential equations for the instantaneous basis expansion
coefficients we use the method based on the time-dependent perturbation theory
of the quantum mechanics. To the first order of the amplitude we derive the
expressions for the number of the created particles for both parametric
resonance and non-resonance cases.Comment: 8 pages, LaTeX, no figure
- …