
                           
              

                          
        

Coulomb interaction and transport in tunnel junctions and 
quantum dots 

T. Brandes,  W. H/iusler, K. Jauregui,  B. Kramer  and D. Weinmann ~ 
Physikalisch-Technische Bundesanstalt, Braunschweig, Germany 

In the first part of the paper the AC conductance of a quasi-one-dimensional tunnel junction involving a potential barrier 
is calculated in linear response. Its frequency dependence is used to define a dynamical capacitance. The influence of phase 
breaking electron-phonon interactions is investigated. It is argued that Coulomb interaction is of minor importance at 
higher frequencies and that dynamic and static capacitances are the same. The argument provides a high-frequency limit 
for turnstile operation. In the second part, the quantum mechanical properties of few interacting electrons in quantum dots 
are considered. Including the spin degree of freedom, the spectral properties of up to four interacting electrons confined 
within a quasi-one-dimensional system of finite length with Coulomb interactions are investigated by numerical 
diagonalization. The limitations of the description in terms of a capacitance are discussed. For sufficiently low density the 
electrons become localized, forming a Wigner molecule. The energetically lowest excitations are identified as vibrational 
and tunneling modes, both being collective modes involving all the electrons. 

I. Introduction 

Interaction effects play a crucial role in the 
understanding of the electronic transport prop- 
erties of very small condensed matter systems at 
low temperatures [1]. Examples are 
- the Coulomb blockade [2,3], where charging 

energies of single electrons suppress the cur- 
rent through a dissipatively shunted tunnel 
junction; 

- single electron tunneling (SET) oscillations [4] 
of the voltage across a tunnel junction at 
constant current; 

- resonance-like oscillations of the conductance 
of quantum dots, being periodic in multiples 
of the elementary charge inside the dot [5-7]. 

An important feature in conductance measure- 
ments involving tunnel junctions and quantum 
dots is the relative isolation of the sample region 
from the 'external world'. In the Coulomb block- 
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ade experiments this is achieved by a shunt 
impedance representing the (phase randomizing) 
influence of a coupling to the electromagnetic 
environment. In the quantum dot experiments, 
weak coupling is achieved by almost impene- 
trable tunnel junctions. Here the time scale for a 
tunneling event is large compared to the other 
inverse energies involved, namely the Fermi 
energy of the external wires, the charging energy 
and the characteristic energy of the dissipative 
heat bath. On the time scale of all relaxation 
processes, the electron number becomes a good 
quantum number. The quantum properties of 
the disconnected dot can therefore be considered 
as the most dominating factor in the single 
electron phenomena. The Coulomb interaction 
should be taken into account because the charg- 
ing energy is the most relevant energy scale of 
the problem. The validity of the commonly used 
phenomenological description by means of the 
classical concept of a capacitance C [8,9] is not 
completely obvious [10,11[ and needs to be 
justified. 

In this paper, we investigate the question of 
the justification of the capacitance in very small 
quantum systems by considering their dynamical 
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and statical properties. In section 2 the AC 
conductance of a quasi-one-dimensional poten- 
tial barrier is calculated and interpreted in terms 
of a dynamical capacitance, which is found to be 
relevant at higher frequencies. We demonstrate 
that it is completely determined by the quantum 
mechanical properties of the system by consider- 
ing the influence of phase breaking electron-  
phonon interaction. In section 3 a model of few 
Coulombically interacting electrons within a 1D 
square well potential is examined. We clarify the 
competit ion between confinement energy and 
Coulomb interaction [12] for low electron num- 
bers [7,13] and for dilute electron systems. 
Two kinds of elementary excitations, vibrational 
and tunneling modes are identified. They are 
characteristic for the region of dilute and inter- 
mediate electron densities and can be under- 
stood physically in terms of the Wigner molecule 
picture. 

2. AC conductance and dynamical capacitance 
of tunnel junctions 

2.1. Frequency-dependent  transport 

Using the frequency-dependent conductance 
one can define a capacitance of a tunnel junction 
modeled by a potential barrier without referring 
to the Coulomb energy. We will demonstrate 
that in certain regions of Fermi energy E v and 
barrier parameters one can simulate the behavior 
of the quantum system by a circuit involving 
resistors and a capacitor. The 'dynamical' capaci- 
tance defined in this way is a genuine quantum 
feature. This is demonstrated by studying the 
dependence of the AC conductance on inelastic 
processes using a simplified model involving 
e lec t ron-phonon  coupling. The capacitive 
behavior is suppressed as temperature is in- 
creased when inelastic scattering is present. A 
similar effect has been found recently [14] using 
a semi-classical approach yielding the current -  
voltage characteristic at zero frequency. 

In the following we use quantum mechanical 

linear response theory. It provides a formalism 
that allows, at least in principle, to treat inelastic 
processes and interactions in a systematic man- 
ner. 

For simplicity, the electric field E(x,  t ) =  E o 
e9(l/2 - ] x ] )  cos(cot) is assumed to be constant on 
a finite interval l of an infinitely long wire. The 
conductance F(co), defined via the absorbed 
power [15,16], is given by the spatial average of 
the real (absorptive) part of the conductivity 

I/2 

1 f ax' '.co). (1) F(co) = 12 dx Re o-(x, x , 
l / 2  

In order to decide whether or not the dy- 
namical capacitance is the same as the static 
capacitance needed to understand Coulomb 
blockade it is in principle necessary to consider 
the influence of e lectron-electron interaction. 
While Coulomb interactions are crucial in the 
case of zero frequency, their importance for the 
conductance diminishes as frequency is in- 
creased. This can be concluded from the RPA 
result for the density-density correlation func- 
tion [17] of a quantum wire where the interac- 
tion-induced corrections to the non-interacting 

- 2  limit vanish as co 
A quantitative estimate of the frequency coo 

above which Coulomb interactions have minor 
influence can be found using the tunneling 
Hamiltonian 

H =  Hc + HR + Hv + H c , 

where H L and H R describe semi-infinite wires on 
the left and right side of the barrier. They are 
coupled by the tunneling term H v and the 
Coulomb interaction modeled by H c = A(Qt , -  
QR) 2, where QL and QR are the total charge in 
the left and the right wire and A parametrizes the 
interaction strength. Applying linear response 
theory for A = 0, one finds that the conductance 
consists of two contributions. The first is F,~ = 
(e2 /h)(col/4vv) 2 at low frequencies hco ~ E v and 
kvl  >> 1 and is due to the motion of the electrons 
in the semi-infinite wires. Here,  l is the interval 
where the electric field is applied, v v and k F are 
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the Fermi velocity and wave vector, respectively. 
The second contribution is the DC value (e2/ 
h)T,  which is due to electrons tunneling through 
the barrier with transmission probability T. Tak- 
ing into account the Coulomb interaction (A # 
0), the first contribution remains unchanged and 
H c results only in a constant energy shift. The 
second contribution to F arising from charge- 
changing tunneling turns out to be suppressed 
[18]. We define oJ 0 as the frequency above which 
the unchanged term ~w 2 prevails over the (DC-) 
contribution at A = 0  that is influenced by 
Coulomb interactions. Well above this fre- 
quency, which is given by w 0 = (4vv/l)X/--T, the 
total conductance is dominated by the semi-infi- 
nite wires, independent of the strength of the 
interaction A. For high frequencies w >>w 0 the 
investigation of frequency dependent transport 
properties of tunnel junctions neglecting elec- 
t ron-e lec t ron  interactions should be a good 
approximation for the system even in the pres- 
ence of interactions. 

2.2. The model system 

Instead of the tunneling Hamiltonian including 
Coulomb interaction, we consider now a quasi- 
one-dimensional system confined by a parabolic 
potential in transversal direction without 
Coulomb interaction. A rectangular potential 
barrier of length b and height V in the longi- 
tudinal direction serves as a model for a tunnel 
junction. This description is more suitable for a 
discussion of the dependence on barrier parame- 
ters than the tunneling Hamiltonian. We solve 
the Schr6dinger equation with the potential 
V ( x , x _ ) = V O ( b / 2 - I x I ) + V ( x ± )  and assume 
that the wire is narrow enough to allow the 
restriction to the lowest band with transversal 
wave function X(x±) ~ exp - (x±/2A)2(x = 
( x , x . ) ) ,  where A is the effective transversal 
width. For a system of total length L we 
calculate the exact longitudinal eigenfunctions 
using periodic boundary conditions at x = +_L/2 
and evaluate the conductance for L---+w. The 
result is 

h ( f ( E ) - f ( E  + hw) 
F(w) = ~ J dE hw 

0 

( m L ~  2 1  ' ~  2 

with k = [2mE]I/2/h and k~ = [2m(E + hw)]l/2/h 
(m effective mass). The current matrix elements 
between symmetrical states characterized by the 
wave number k I and antisymmetric states that 
correspond to k 2 are 

eh 
1 Sa - ( O ( l -  b)[~k,k2(t) - ~,,,~(b)l k,k2 imL 

s a 

~- ~l kl 'Yk2~klk2(b)). 

Here,  we have introduced the functions 

fk,k2(X) = cos[k-x~2 + 4~ ]k + /k 

- c o s [ k ~ x / 2  + ~h +]k /k +, 

G,k:(X) = sinh[K +x/2]K /K + 

-sinh[K x/2]K + /K , 

with Kl,2=[ 2mV/h2-k2-1,2J 11/2 ( k ~ = k , + k 2 "  
a ) T h e  fac tors  y~'"  _+ s -I- ( j ~ k  2 . K =KI+--K2, 4 ~ + - = + k  -- 

describe the suppression of the wave function 
under  the barrier and the angles 4~ S'~ k are con- 
nected with the phase shift of the wave func- 
tions. F(w) at zero temperature is plotted in fig. 
1 for various values of E F. 

It is instructive to consider some limiting 
cases: For V= 0 or b = 0, the well known [16] 
conductance of a free quantum wire in the 
regime hw ~ E v is reproduced, 

e 2 sin(wl/2vv)] ~ 
r"ree( ) =--E ( ; " (2) 

By means of the Kramers-Kronig  relation, one 
obtains from the real (absorptive) part (2) an 
approximation for the imaginary (reactive) part 

e 22Vv ( sin(od/Vv)~ 
r; ,e~(°")-  - h o d  1 ~ ) ,  (3) 

which is correct at low frequencies. The behavior 
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r(o,) [~/hl 

1. 

EF/V 

1) and expand the real part of its conductance 
for low frequencies. In the case F T ~ I / I Z v l ,  
using for the impedance Z v the results for the 
free quantum wire (2) and (3), we find 

h 
= q,  + cZ,o + o[ oq. 

e 

Comparison with eq. (4) yields 

1:5 

e2m k v 1 
a b "  C 21Th 2 Kv 

O. 

- ~ ,  [ v / h ]  

Fig. 1. AC conductance of the one-dimensional  system with 
a barrier of length b = 5 h ( 2 m V )  ' :  and field length 1 = 
7h(2mV) :e at zero temperature  for various values of E ,  
(the curves are offset). The inset shows the classical circuit to 
s imulate  the AC behavior of the tunnel junction. 

of F,r~(w ) is very close to the conductance of a 
classical resistance h/e 2 and an inductance (h/ 
e2)l/3vv in series. 

The limit w-->0 gives FDC = (e2/h)T(Ev) with 
the transmission coefficient of the barrier T(Ev). 
Thus, the Landauer formula [19] is identical to 
the DC limit of linear response theory [20]. Due 
to the presence of quantum coherence this result 
is independent of the region where the driving 
field is applied, even if it is completely outside 
the barrier. 

For a nearly impenetrable barrier, keeping 
only the leading term in exp( -Kb)  we expand 
with respect to oJ for k v ~ K  v and find for the 
simplest case b = l (details for the general case 
will be given elsewhere [18]) 

e e e 2 m  2 k~ 2 
= o~ + Olw4]. (4) l '(w) ~-- T(EF) + 2~rh3b 2 K~ v

The second term may be interpreted in terms of 
a capacitance: we consider a classical circuit (fig. 

Using reasonable values of the parameters,  suit- 
able for instance for G a A s - A I G a A s  hetero- 
structures [6], we find that a barrier of length 
b = 130nm and height 0.75 meV has a capaci- 
tance of the order of 10-JSF per conductance 
channel at E v = 0.05 meV. Furthermore,  we see 
that the critical frequency w o, below which the 
influence of e lectron-electron interactions is of 
importance, is very small on the frequency scale 
V/h characteristic for the AC conductance at low 
frequencies. Therefore  the low frequency expan- 
sion remains valid well above w 0. For a wire of 
finite width the number of channels increases 
proportional to the cross-section A of the wire 
and C - - A / b  as for a classical parallel-plate 
capacitor, when the potential representing the 
tunnel junction is independent of the transverse 
coordinates. 

We want to emphasize that the capacitance 
discussed above describes the behavior of the 
tunnel junction at high frequencies and is not a 
correction to the static capacitance like the one 
due to quasiparticle tunneling in Josephson junc- 
tions as calculated in ref. [10]. 

2.3. The influence of  inelastic processes 

To demonstrate that the capacitive behavior 
(4) is of quantum mechanical origin we investi- 
gate the influence of inelastic processes. We will 
see that they eventually lead to a vanishing of 
the effect. 

We consider a simplified version of the above 
model, namely a barrier of the form V(x)= 
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Vo6(x ). The (retarded) single-electron Green's 
function is [21] 

G(x, x'  ; w) : G°(x, x'  ; w) 

o + V° G (x, O; w) 
1 - VoG°(O, o; ~o) 

x G°(0, x ' ;  o)) , 

where G ° is the Green's function for V 0 = 0. The 
simplest approach to take into account phase 
breaking processes consists in renormalizing G o 
by a self-energy X caused by electron-phonon 
(e-p) interaction. We assume that electrons and 
phonons are coupled via a deformation potential 
[171 

1 
V e p(X) -= - ~  ~'~ VoF(Q±) exp(iqx)(a o + a*_o), 

Q 

with phonon wave vector Q = (q, Q~), IVo[ 2= 
2 4 VDIQ[/Q D, Debye cutoff QD and coupling 

parameter VD, .O being the total system vol- 
ume (~/---~). The form factor F ( Q . ) =  
( x[exp(iQ ±x x)[x ) reflects the fact that although 
the phonons are three-dimensional the e -p  
coupling is affected by the confining potential. In 
second order perturbation theory with respect to 
e - p  coupling and close t o  EF, we can restrict 
ourselves to ImX(k,  ~o), numerical evaluation 
yielding only weak k- but strong w-dependence 
around E v similar to the results of ref. [22]. 
Neglecting the k-dependence of X around the 
Fermi wave vector k v we get 

im 
G °= fi2y(oo) e x p ( i y ( w ) l x - x ' ] ) ,  

3,(to) = V~/2mh- (liw + E v - J i m  Z(k  v, to)) 
i 

from which we calculate G and the corre- 
sponding spectral function -(1/'rr) Im G. Neg- 
lecting vertex corrections, the dissipative nonloc- 
al conductivity of the one-channel system can be 
calculated from the Kubo formula involving only 
products of the spectral functions at different 
energies [23]. 

From the general result (1) one finds the DC 
limit of the conductance. The e -p  interaction 

r ( , .d  I.~ t~.l 

• - . ~ e j  """4"~ ~ - ,o [lo-~Er/til 

0 
Fig. 2. Conductance F(oJ) for 8-barr ier  s t rength kvVo/E v = 7 
and kvl = 1000. Self-energy pa ramete r s  are (VD/EF) 2 = 0.08"rr, 
QD/kv =1 ,  hwD/EF=O.O1 and k v A = l .  In the inset,  the 
resistance at ~o = 0 for ~-barr ier  s t rength kvVo/E v = 0, 2, 4, 6 
( f rom below) is shown as a funct ion of  l / l~.  

introduces an additional length-scale, namely 
lln ~ := 2 Im[2m/lia(Ev - i Im X(k F, 0))] 1/2 which 
is the decay-length of the Green's function G ° 
without the barrier. We evaluate the DC resist- 
ance R = F - l ( 0 )  as a function of l/l~n for kBT 
E v and kvlin>>l corresponding to weak e -p  
coupling (fig. 2). For la, = ~c we reproduce Lan- 
dauer's result, for l/lin>>l we have ohmic 
behavior with R proportional to the effective 
length l of the wire. In the intermediate region 
the behavior of R depends on the 6-barrier 
strength V 0. 

The evaluation of F(~o) (fig. 2) at nonzero 
frequency is again simplified when ~O~EF/ti 
besides kBT ~ E v. The increase of conductance 
with frequency for small ~o can again be inter- 
preted as a capacitive behavior. The oscillatory 
decrease of F(m) is similar to the free one- 
channel quantum wire (2). 

The most important result is the suppression 
of oscillatory and capacitative behavior with 
increasing temperature as a result of the loss of 
phase coherence. Both effects are destroyed the 
e -p  interaction showing that the dynamical 
capacitance is a quantum mechanical property of 
the system. 

3. Interacting electrons in quantum dots 

In order to investigate the quantum mechani- 
cal meaning of a static capacitance we consider 
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numerically the influence of the Coulomb inter- 
action on a few electrons in a 1D square well 
potential.  In contrast  to previous work [24] we 
treat  up to N = 4 electrons exactly. 

3.1. Mode l  o f  a square well potential  

For the e lec t ron-e lec t ron interaction, we use a 
potential  

1 
V(x, x') V(x - x ' )  2 + A 2 '  (5) 

which behaves Coulombically at large distances. 
A is a measure  for the width of the electron wave 
functions in transversal direction. In most of our 
calculations we take A / L  = 2  x 1 0 - 4 < ~  1, where 
L is the system length. Then,  the eigenvalues of 
the Hamil tonian 

as(_  ) 
H = E H -~- H 0 + H l (6) 

depend only weakly on A. E H =eZ/aB is the 
Har t ree  energy, a B = e h 2 / m e  2 the Bohr radius, e 
the relative dielectric constant and m the effec- 
tive electron mass. The relative importance of 
the kinetic energy in the 1D square well poten- 
tial 

the background charge distribution with varying 
the electron number  (the total background 
charge in the experiment  is regulated externally 
by the gate voltage). Such contributions should 
not modify our results qualitatively. 

For the numerical diagonalization single par- 
ticle states c~10 ) with l<~n<~M were chosen 
(usually M = 9 . . .  17, depending on the calcula- 
tion). The properly anti-symmetrized,  non-inter- 
acting N-particle basis @(U), including the spin 
degree of f reedom, is of dimensionality 

In our calculations R was restricted to 1.5 x 104, 
even when using Lanczos procedures.  To avoid 
loops over  all R 2 matrix elements of the 
Hamiltonian,  we used the following economic 
procedure to occupy the matrix. Starting f rom 
the (N - 2)-particle basis, the application of two 
creation operators  onto a c e r t a i n  ~j:N-2) gener- 
ates say the N-particle state @(u) with proper  
sign. @(u) corresponds to a certain row ~, of the 
Hamiltonian matrix. Creating from the same 

~b (u) identifies a &(N-Z) a (different or the same!)  _ , ,  t O ,  
certain column v'. The independent  summation 
over  all possible two-particle excitations and 

H o  ~ Z t f inCh.etCh,or  
n ,G 

( e  n ~ n  2, n E N )  decreases as compared  to the 
Coulomb energy 

HI Z ~ t = V . . . . c . , ~ c . , . c . , ~ c . , ~  (7) 
4 3 2 1 4 1 '*3 2 " 2  2 1 I ~ r t l . . , t l 4 ,o l . e r  2 

with increasing system length L. The matrix 
elements  V//4n3n2n I are real and do not depend on 
the electron spin o-. The total spin S is therefore 
conserved and all eigenvalues are (2S + l)-fold 
degenerate .  

We want to discuss the interplay between 
kinetic energy H 0 and Coulomb energy H~ as 
function of system length and electron number.  
No charge neutralizing background [11] is taken 
into account. It would be only relevant to study 
the influence of a selfconsistent adjustment  of 

E u - E 0

EH 

3' 

2. 

1" 

0 - -  
1 

z - - -  _-- 

- r ,  ---," _ 0 - - . J  _ l / 2 - - - r  _ 0  1 

2 3 4 N 
Fig. 3. Typical spectra of model (6) for various N and 
L = 9.45a B. For N ~> 2 the low lying eigenvalues form groups 
of (fine structure) multiplets, the total number of states per 
multiplet being equal to the dimensionality of the spin 
Hilbert space 2 N. This is shown in the magnification. The 
ground state energy is subtracted respectively. 
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subsequent summation over all (N-2)-particle 
states generates eventually all non-vanishing 
entries (including sums from n 4 = n, and/or n 3 = 
n2, cf. eq. (7)) of the Hamiltonian matrix. 

Typical examples of N-electron energy spectra 
are shown in fig. 3. In presence of interaction, 
N > 1, the density of states becomes much more 
inhomogeneous. The lowest eigenvalues form 
multiplets of extremely small width when L >> 
Na B . The total number of states within each of 
these multiplets, including degeneracies, is 2 N. 

3.2. Ground state energies 

Figure 4 shows the dependence of the ground 
state energy per particle Eo/N on the particle 
number N for different L. The data are multi- 
plied by L in order to eliminate the trivial L 
dependence. The charging model would yield a 
straight line for the ground state energy as a 
function of the particle number Eo(N ) when 
plotted in the same way. In very small systems 
Eo/N deviates from a linear ( N -  l)-dependence 
due to the discreteness of the spectrum of H o. 
On the other hand, for systems with large L the 
formation of an inhomogeneous charge density 
(Wigner molecule, see below) prevents the 
ground state energy of few electrons to obey 
E o / N o : ( N - 1 ) .  A better approximation is ob- 
tained by considering the Coulomb energy of N 

point charges at equal distances 

r~ : L / ( N -  1). 

The importance of this charge "crystallization", 
which is a consequence of the charge quantiza- 
tion, for the capacitance per unit length C/L can 
be visualized for equidistant elementary point 
charges in 1D. With C(N):= (Ne)2/2U and U 
given by the electrostatical energy one obtains 

C(N)/L - 2 ( N -  1) _ 

In contrast to the classical capacitance of a long 
and homogeneously charged cylinder, this 
capacitance per unit length is independent of L 
but explicitly dependent on the charge. Thus it is 
not a constant. Also in higher dimensionalities 
we expect considerable fluctuations of the 
capacitance as a function of the charge due to 
the inhomogeneity of the charge density. 

On the other hand for short systems with a 
more homogeneous charge distribution, quan- 
tum mechanical corrections to the ground state 
energy lead to the non-applicability of the 
capacitance formula. Our ground state energies 
cannot be reproduced by adding (Ne)2/2C to the 
ground state of the non-interacting system. 

3.3. Wigner molecule 

10. 

E 0 L 

N E H a B 

5 

0 
[] 

A 
O + 

X [ ]  

o t 

1 2 3 4 N 
Fig. 4. Ground state energies per particle Eo/N multiplied by 
L / a  s versus the particle number N for: L = 6 , 6 1 a  B (Ul); 
L = 1 6 . 1 a  B (©); L = 9 4 . 5 a  B (A);  L = 9 4 4 . 8 a  B (+) .  ( × )  
denote the energy of N fixed point charges equally spaced at 
distances L / ( N -  1). The quantum mechanical ground state 
energies (slowly) approach these values as L---~ ~. 

The formation of localized charge density 
distributions with increasing electron distance is 
visualized by the one-particle density 

,h (N~[~[_t ~; (X'~alz (x~[d~(N)~ o ( x )  : Z , , , 
( r  

for the N-electron ground state [o~N)) at a 
certain system length L, as it is provided from 
the diagonalization of our model Hamiltonian 
(6). The field operator ~t~(x) is defined to create 
one electron with spin o" at the position x. The 
truncation of the Hilbert space restricts the n 
summation over the eigenfunctions ~,(x) of the 
non-interacting (confinement) problem H 0 to 
• , ; ( x )  = M E.=l ~n(X)Cn,~. 

In fig. 5 p(x) is shown for three electrons and 
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5.0 
I 4.5 

6.0 
~- 3.5 

3.o 

2.5 
2 . 0 7  

1.5" 

qC 
i 

0.0 ~ , l i  

L=945~ 

L=189~ i 
/ L-9.5. £L-0.1~ 

/ ,'1~/ \ "- . . . . . . . . .  , 

-i, j 
-1.2-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Fig. 5. One-particle density p(x) of three electrons for 
different system lengths. The abscissa is rescaled to the 
interval [-1, 1] as described in the text. To obtain the ground 
state IqJ~ ~) the lowest M = 13 single particle eigenfunctions 
have been taken into account. The transition from a weak 
influence of the Coulomb interaction to the fully established 
Wigner molecule can be followed for O.laB<~L ~<945%. 
Already for L ~> 1% three peaks begin to develop. For 
L ~> 100% the peaks are well separated, the charge in-be- 
tween being nearly vanishing. 

0 zx £ x  

- = - 5  6 
r"l x .  

-10 

-15 [] 
0 1'0 2'0 l../a B

Fig. 6. The logarithm of the energy difference A between the 
ground state and the first excited state within the lowest 
multiplet is shown versus the system length for N = 2, M = 11 
([]), N= 3, M = 13 ((3), and N=4,  M= 10 (A). From the 
slope we estimate Lj ~- 1.5%. As inset, the pair correlation 
function Oc(x,x') is presented as it is defined in eq. (8) for 
N = 2 and L = 19%. The two coordinates are normalized to 
the interval [-1, 1]. 

var ious  system lengths. In o rder  to allow com- 
parisons,  the length scale on the abscissa is 
normal ized  to the interval [ - 1 ,  1] and the ordi- 
nate is cor respondingly  rescaled to leave the 
integral  J" dx p(x) = 3 invariant.  For  later pur- 
poses a finite height of  the potential  barr ier  V/L  2 
has been  considered which is of  no qualitative 
re levance  here besides the fact that  the one 
part icle density does not  vanish outside the 
square  well box in fig. 5. 

For  L ~< 0 . laB,  the Cou lomb  interact ion in eq. 
(6) is s trongly suppressed and the charge density 
resembles  the non- in terac t ing  case. Two of the 
e lect rons  are in the first quan tum state (with 
oppos i te  spin) which is an even function of  x and 
the third one popula tes  the second quan tum 
state,  causing the dip at x = 0. Al ready  at L ~> 
la  B the three maxima start to develop.  This 
length scale very well cor responds  to the transi- 
t ion f rom non-interact ing propert ies  of  the 
sys tem to the strongly Cou lomb  domina ted  tun- 
neling behav ior  for the low lying excitations as it 
will be descr ibed in section 3.4. Fur ther  increase 
o f  L eventual ly  leads to a nearly vanishing 
charge density be tween  the posit ions of  the 
maxima.  For  r= ~> 100% the Wigner  molecule  is 

fully established and the g round  state energy  
may be approximated  by three e lementary  
charges at a distance r,. 

The  pair  correlat ion function 

pc(x, x') 
= Z =)) (s) 

~ , ( r '  

for  N =  2 is shown in the inset of  fig. 6. Pc is 
related to the dens i ty -dens i ty  correlat ion func- 
t ion th rough  P2(X, X ' )  = p(x)6(x - x ' )  + Pc(X, x ' ) .  
Pc gives the probabil i ty to find an electron at the 
posi t ion x when the second electron is supposed 
to be at x' .  For  two particle states f rom the 
lowest multiplet ,  in contrast  to the non-interact-  
ing case, this correlat ion function is not  very 
sensitive to the total spin of  the wave function. 
In this case each of  the peaks resemble the 
square  of  the pocket  states described in section 
3.4. 

3.4. L o w  lying excitations 

For  L >>Na a the spec t rum of  the low lying 
excitations can be unders tood  using the picture 
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of a Wigner molecule. The one particle density 
shows N approximately equidistant peaks [25]. 
One type of excitation in such an arrangement is 
of a phonon kind due to the Coulomb forces 
between the charges. Similar to the one particle 
density these vibrational excitations are insensi- 
tive to the total spin and the symmetry prop- 
erties of the wave function. The typical phonon 
frequencies J2 decrease with increasing system 
length, this is also found from our numerical 
eigenvalues. The decrease can be approximated 
asymptotically by g 2 - r s  v [26] at electron dis- 
tances r s ~> 100a B. Then the 1D Wigner molecule 
in the previous section is found to be fully 
established. 

Already for much higher electron densities the 
lowest eigenvalues show the characteristic prop- 
erty of level multiplets (fig. 3), each containing 
2 N states. The energy distance between the 
multiplets corresponds to the vibrational excita- 
tions, whereas the comparatively narrow fine 
structure determines the tunneling kind of excita- 
tions. 

This fine structure spectrum can be understood 
by considering the N-dimensional configuration 
space L N [27]. Due to the symmetry of the 
potential (5), the modulus of the N-particle 
probability amplitude has maxima at N! different 
points corresponding to the number permuta- 
tions of N particles. The eigenfunctions can 
approximately be identified with linear combina- 
tions of "pocket  states" [ j) ,  1 ~<j ~<N!, each 
being concentrated around the vicinity of one 
potential minimum. The coefficients for the 
linear combination are determined by the ir- 
reducible representations of the associated 
permutat ion group. Correspondingly the eigen- 
values are approximated by eigenvalues of a 
N!-dimensional Hamiltonian matrix. Their dif- 
ferences are proportional to overlap integrals 
between the states I J)- From these suppositions, 
the relative distances between the fine structure 
levels can be determined using group theoretical 
arguments [27]. Assuming an asymptotically ex- 
ponential decay of the pocket state wave func- 
tions suggests that A ~ exp(-L/La),  where A is 
the energy difference between the ground state 
and the first excited state within the lowest 

multiplet. L a is then a characteristic length scale 
beyond which the non-interacting spectrum is 
changed into the multiplet structure characteris- 
tic for the influence of the Coulomb interaction. 
In fig. 6 the L-dependence of ln(A/EH) is plotted 
for different N. From the slope of the linear part 
of the data we obtain L a -~ 1.5a B. 

4. Conclusions 

We have found that the AC conductance of a 
quantum mechanical tunnel barrier can be simu- 
lated in a certain range of parameters by a 
classical circuit. This correspondence can be used 
to define a dynamical quantum mechanical 
capacitance of the tunnel contact. The latter 
depends not only on geometrical parameters like 
a classical capacitance but also on Fermi energy 
and effective mass of the charge carriers. Like 
the tunnel resistance the dynamical capacitance 
is of quantum mechanical origin. This was dem- 
onstrated using a model with e lec t ron-phonon 
interaction destroying quantum mechanical 
coherence. 

We have further argued that the dynamical 
capacitance should not depend on the Coulomb 
interaction above a critical frequency ~o 0. Thus if 
the capacitance is a genuine property of the 
system independent of the experiment which is 
used for its detection one may conclude that the 
dynamical capacitance has to be the same as the 
static capacitance used for the explanation of 
Coulomb blockade experiments. 

The frequency ~0 can also be considered to be 
an upper limit for the observation of the 
Coulomb blockade effect and, important  for 
practical applications, the limiting frequency for 
turnstile devices [28,29] proposed as current 
standard. Reasonable parameter  values for 
GaAs-AIGaAs  structures [6] (V= 0.75 meV, 
E F = 0.05 meV, m = 0.07m e, b = 130nm and l =  
1 p~m) yield w 0 ~ 1 GHz. This would limit the 
highest achievable current in such a turnstile 
device to about 25 pA. Using the estimate [29], 
o~c--2,n/RvC-T/C, one obtains a frequency 
which is an order of magnitude smaller. 

Furthermore,  we have calculated numerically 
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the energy spectra of up to N = 4  electrons 
confined in a quasi-one-dimensional square well 
potential of finite length. The discussion in terms 
of the pocket state basis suggests that our pre- 
sented classification of the energy eigenvalues 
should remain valid also in 2D or 3D systems if 
the width of the system does not exceed the 
width of one pocket state wave function. Our 
N =  2 eigenvalues agree nearly quantitatively 
with the lowest eigenvalues calculated by Bryant 
[30] in a rectangular two dimensional quantum 
dot, which has been 10 times longer than wide. 

We have demonstrated that the ground state 
energies Eo(N ) deviate from the N 2 behavior 
assumed in the charging model because of the 
formation of a Wigner-molecule-like structure at 
sufficiently low electron densities (quantization 
of the charge) and the quantum mechanical 
influence of the kinetic energy (non-com- 
mutativity of H0 and HI). Only in sufficiently 
large systems and at sufficiently high electron 
densities, a capacitance-like behavior can be 
obtained. 

We have obtained three different regimes for 
the electron densities to characterize the excita- 
tion spectra. The Wigner molecule is found to be 
fully established for densities 1/r S below 
10-2aB I Nevertheless, the description of the 
interacting spectrum in terms of the pocket state 
picture does already hold at much larger electron 
densities. Note that the pocket states are collec- 
tive modes of all electrons. The reason is shown 
to be the onset of the peak structure of the 
charge density already for much shorter systems 
(fig. 5). Only for L ~< L a ~ 1.5a B the confinement 
energy starts to dominate the Coulomb energy 
and the spectrum approaches the non-interacting 
limit (fig. 6). Neither the ground state energy 
nor the level spectrum is given by a sum of 
kinetic and potential energy eigenvalues separ- 
ately! 

Experiments are frequently performed on A1- 
GaAs/GaAs-based heterostructures which 
rather correspond to a 2D situation. It is not 
obvious in how far our 1D classification for the 
length and energy scales of few Coulombically 
interacting electrons can be applied to that case. 
If we assume that at least the qualitative aspects 

of our classification into different regimes for the 
electron density can be used, the intermediate 
regime should apply in most circumstances. 
Given the geometry and the electron numbers in 
typical quantum dots [5] (area of the d o t ~  
105 nm 2, number of electrons= 102, effective 
mass ~ 0 .07me ,  dielectric constant ~ 10) a mean 
distance of r S~3aB can be estimated. For this 
relatively high electron density the ground state 
energy, which is in first approximation the rel- 
evant quantity that enters a linear DC transport 
experiment, can roughly be estimated by using 
the charging model. However, the excitation 
energies in quantum dots can never be found by 
just adding the (non-interacting) confinement 
energy levels. They are substantially character- 
ized by the fine structure level spectrum differing 
e.g. in total spin. 

In experimental situations as they were recent- 
ly realized by Meurer et al. [13] with only a few 
electrons per quantum dot, the charging model 
cannot be expected to yield correct results for 
the ground state energy. 
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