308 research outputs found

    Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    Get PDF
    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling model (MQMC) by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass MNM^{*}_N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modeled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at 5-8 times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at higher temperature reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities.Comment: 8 pages, latex, 4 eps figure

    Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory

    Get PDF
    The equation of state (EOS) of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the non-linear σωρ\sigma-\omega -\rho model. The caloric curves are calculated by confining the nuclei in the freeze-out volume taken to be a sphere of size about 4 to 8 times the normal nuclear volume. The results obtained from the relativistic theory are not significantly different from those obtained earlier in a non-relativistic framework. The nature of the EOS and the peaked structure of the specific heat CvC_v obtained from the caloric curves show clear signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the entropy at constant pressure indicate that the characteristics of the transition are not too different from the first-order one.Comment: RevTex file(19 pages) and 12 psfiles for fugures. Physical Review C (in Press

    Heated nuclear matter, condensation phenomena and the hadronic equation of state

    Full text link
    The thermodynamic properties of heated nuclear matter are explored using an exactly solvable canonical ensemble model. This model reduces to the results of an ideal Fermi gas at low temperatures. At higher temperatures, the fragmentation of the nuclear matter into clusters of nucleons leads to features that resemble a Bose gas. Some parallels of this model with the phenomena of Bose condensation and with percolation phenomena are discussed. A simple expression for the hadronic equation of state is obtained from the model.Comment: 12 pages, revtex, 1 ps file appended (figure 1

    Deconfinement in the Quark Meson Coupling Model

    Get PDF
    The Quark Meson Coupling Model which describes nuclear matter as a collection of non-overlapping MIT bags interacting by the self-consistent exchange of scalar and vector mesons is used to study nuclear matter at finite temperature. In its modified version, the density dependence of the bag constant is introduced by a direct coupling between the bag constant and the scalar mean field. In the present work, the coupling of the scalar mean field with the constituent quarks is considered exactly through the solution of the Dirac equation. Our results show that a phase transition takes place at a critical temperature around 200 MeV in which the scalar mean field takes a nonzero value at zero baryon density. Furthermore it is found that the bag constant decreases significantly when the temperature increases above this critical temperature indicating the onset of quark deconfinement.Comment: LaTeX/TeX 15 pages (zk2.tex)+ 6 figures in TeX forma

    The Liquid-Gas Phase Transitions in a Multicomponent Nuclear System with Coulomb and Surface Effects

    Get PDF
    The liquid-gas phase transition is studied in a multi-component nuclear system using a local Skyrme interaction with Coulomb and surface effects. Some features are qualitatively the same as the results of Muller and Serot which uses relativistic mean field without Coulomb and surface effects. Surface tension brings the coexistance binodal surface to lower pressure. The Coulomb interaction makes the binodal surface smaller and cause another pair of binodal points at low pressure and large proton fraction with less protons in liquid phase and more protons in gas phase.Comment: 20 pages including 7 postscript figure

    Isotope thermometery in nuclear multifragmentation

    Get PDF
    A systematic study of the effect of fragment-fragment interaction, quantum statistics, γ\gamma-feeding and collective flow is made in the extraction of the nuclear temperature from the double ratio of the isotopic yields in the statistical model of one-step (Prompt) multifragmentation. Temperature is also extracted from the isotope yield ratios generated in the sequential binary-decay model. Comparison of the thermodynamic temperature with the extracted temperatures for different isotope ratios show some anomaly in both models which is discussed in the context of experimentally measured caloric curves.Comment: uuencoded gzipped file containing 20 pages of text in REVTEX format and 12 figures (Postscript files). Physical Review C (in press

    Hot Hypernuclear Matter in the Modified Quark Meson Coupling Model

    Get PDF
    Hot hypernuclear matter is investigated in an explicit SU(3) quark model based on a mean field description of nonoverlapping baryon bags bound by the self-consistent exchange of scalar σ,ζ\sigma, \zeta and vector ω,ϕ\omega, \phi mesons. The σ,ω\sigma, \omega mean fields are assumed to couple to the u,d-quarks while the ζ,ϕ\zeta, \phi mean fields are coupled to the s-quark. The coupling constants of the mean fields with the quarks are assumed to satisfy SU(6) symmetry. The calculations take into account the medium dependence of the bag parameter on the scalar fields σ,ζ\sigma, \zeta. We consider only the octet baryons N,Λ,Σ,ΞN,\Lambda,\Sigma,\Xi in hypernuclear matter. An ideal gas of the strange mesons KK and KK^{*} is introduced to keep zero net strangeness density. Our results for symmetric hypernuclear matter show that a phase transition takes place at a critical temperature around 180 MeV in which the scalar mean fields σ,ζ\sigma, \zeta take nonzero values at zero baryon density. Furthermore, the bag contants of the baryons decrease significantly at and above this critical temperature indicating the onset of quark deconfinement. The present results imply that the onset of quark deconfinement in SU(3) hypernuclear matter is much stronger than in SU(2) nuclear matter.Comment: LaTeX/TeX 11 pages (dfg3r.tex), 9 figures in eps forma

    Hot Nuclear Matter in the Quark Meson Coupling Model with Dilatons

    Get PDF
    We study hot nuclear matter in an explicit quark model based on a mean field description of nonoverlapping nucleon bags bound by the self-consistent exchange of scalar and vector mesons as well as the glueball field. The glueball exchange as well as a realization of the broken scale invariance of quantum chromodynamics is achieved through the introduction of a dilaton field. The calculations also take into account the medium-dependence of the bag constant. The effective potential with dilatons is applied to nuclear matter. The nucleon properties at finite temperature as calculated here are found to be appreciably different from cold nuclear matter. The introduction of the dilaton potential improves the shape of the saturation curve at T=0 and is found to affect hot nuclear matter significantly.Comment: LaTeX/TeX 12 pages (zak2), 13 figures in TeX forma

    A unified description for nuclear equation of state and fragmentation in heavy ion collisions

    Full text link
    We propose a model that provides a unified description of nuclear equation of state and fragmentations. The equation of state is evaluated in Bragg-Williams as well as in Bethe-Peierls approximations and compared with that in the mean field theory with Skyrme interactions. The model shows a liquid-gas type phase transition. The nuclear fragment distributions are studied for different densities at finite temperatures. Power law behavior for fragments is observed at critical point. The study of fragment distribution and the second moment S2S_2 shows that the thermal critical point coincides with the percolation point at the critical density. High temperature behavior of the model shows characteristics of chemical equilibrium.Comment: 20 pages in RevTex, 11 figures (uuencoded ps files), to appear in Phys. Rev.

    Effect of Flow on Caloric Curve for Finite Nuclei

    Full text link
    In a finite temperature Thomas-Fermi theory, we construct caloric curves for finite nuclei enclosed in a freeze-out volume few times the normal nuclear volume, with and without inclusion of flow. Without flow, the caloric curve indicates a smooth liquid-gas phase transition whereas with flow, the transition may be very sharp. We discuss these results in the context of two recent experiments, one for heavy symmetric system (Au + Au at 600A MeV) and the other for highly asymmetric system (Au + C at 1A GeV) where different behaviours in the caloric curves are seen.Comment: 11 pages revtex; 4 figs; version to appear in Phys. Rev. Let
    corecore