1,305 research outputs found

    Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators

    Get PDF
    Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of Tc=15KT_c=15\mathrm{K}. At the same time, the films are highly stable in the high-temperature methane / hydrogen atmosphere typically required to grow single wall carbon nanotubes. We characterize molybdenum rhenium alloy films deposited via simultaneous sputtering from two sources, with respect to their composition as function of sputter parameters and their electronic dc as well as GHz properties at low temperature. Specific emphasis is placed on the effect of the carbon nanotube growth conditions on the film. Superconducting coplanar waveguide resonators are defined lithographically; we demonstrate that the resonators remain functional when undergoing nanotube growth conditions, and characterize their properties as function of temperature. This paves the way for ultra-clean nanotube devices grown in situ onto superconducting coplanar waveguide circuit elements.Comment: 8 pages, 6 figure

    Asymptotic Symmetries of String Theory on AdS3 X S3 with Ramond-Ramond Fluxes

    Full text link
    String theory on AdS3 space-times with boundary conditions that allow for black hole states has global asymptotic symmetries which include an infinite dimensional conformal algebra. Using the conformal current algebra for sigma-models on PSU(1,1|2), we explicitly construct the R-symmetry and Virasoro charges in the worldsheet theory describing string theory on AdS3 X S3 with Ramond-Ramond fluxes. We also indicate how to construct the full boundary superconformal algebra. The boundary superconformal algebra plays an important role in classifying the full spectrum of string theory on AdS3 with Ramond-Ramond fluxes, and in the microscopic entropy counting in D1-D5 systems.Comment: 30 page

    Unveiling Soft Gamma-Ray Repeaters with INTEGRAL

    Get PDF
    Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL. and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which ~100 bursts were emitted in ~10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 7 figures, Presented at the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Excitations in one-dimensional S=1/2 quantum antiferromagnets

    Full text link
    The transition from dimerized to uniform phases is studied in terms of spectral weights for spin chains using continuous unitary transformations (CUTs). The spectral weights in the S=1 channel are computed perturbatively around the limit of strong dimerization. We find that the spectral weight is concentrated mainly in the subspaces with a small number of elementary triplets (triplons), even for vanishing dimerization. So, besides spinons, triplons may be used as elementary excitations in spin chains. We conclude that there is no necessity to use fractional excitations in low-dimensional, undoped or doped quantum antiferromagnets.Comment: 4 pages, 1 figure include

    Conformal Current Algebra in Two Dimensions

    Full text link
    We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.Comment: 33 pages, minor correction

    Exact single spin flip for the Hubbard model in d=d=\infty

    Full text link
    It is shown that the dynamics of a single \downarrow-electron interacting with a band of \uparrow-electrons can be calculated exactly in the limit of infinite dimension. The corresponding Green function is determined as a continued fraction. It is used to investigate the stability of saturated ferromagnetism and the nature of the ground state for two generic non-bipartite infinite dimensional lattices. Non Fermi liquid behavior is found. For certain dopings the \downarrow-electron is bound to the \uparrow-holes.Comment: 4 pages, 3 figures included with psfig, Revtex; Phys. Rev. Lett. in press; some amendments made to clarify the calculation of the self-energy, the extrapolation of the continued fraction, and the statements on Fermi-liquid theor

    Nonadiabatic Approach to Spin-Peierls Transitions via Flow Equations

    Full text link
    The validity of the adiabatic approach to spin-Peierls transitions is assessed. An alternative approach is developed which maps the initial magneto-elastic problem to an effective magnetic problem only. Thus the equivalence of magneto-elastic solitons and magnetic spinons is shown. No soft phonon is required for the transition. Temperature dependent couplings are predicted in accordance with the analysis of experimental data.Comment: Latex, 4 pages, Phys. Rev. B, Rap. Comm. in press final version containing some clarification

    Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration

    Full text link
    Reliable long-time storage of arbitrary quantum states is a key element for quantum information processing. In order to dynamically decouple a spin or quantum bit from a dephasing environment, we introduce an optimized sequence of NN control pulses of finite durations \tau\pp and finite amplitudes. The properties of this sequence of length TT stem from a mathematically rigorous derivation. Corrections occur only in order TN+1T^{N+1} and \tau\pp^3 without mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing experiments, a concrete setup for the verification of the properties of the advocated realistic sequence is proposed.Comment: 8 pages, 1 figur

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.
    corecore