1,361 research outputs found

    Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results

    Full text link
    The basic entity of nonlinear interaction in Navier-Stokes and the Magnetohydrodynamic (MHD) equations is a wavenumber triad ({\bf k,p,q}) satisfying k+p+q=0{\bf k+p+q=0}. The expression for the combined energy transfer from two of these wavenumbers to the third wavenumber is known. In this paper we introduce the idea of an effective energy transfer between a pair of modes by the mediation of the third mode, and find an expression for it. Then we apply this formalism to compute the energy transfer in the quasi-steady-state of two-dimensional MHD turbulence with large-scale kinetic forcing. The computation of energy fluxes and the energy transfer between different wavenumber shells is done using the data generated by the pseudo-spectral direct numerical simulation. The picture of energy flux that emerges is quite complex---there is a forward cascade of magnetic energy, an inverse cascade of kinetic energy, a flux of energy from the kinetic to the magnetic field, and a reverse flux which transfers the energy back to the kinetic from the magnetic. The energy transfer between different wavenumber shells is also complex---local and nonlocal transfers often possess opposing features, i.e., energy transfer between some wavenumber shells occurs from kinetic to magnetic, and between other wavenumber shells this transfer is reversed. The net transfer of energy is from kinetic to magnetic. The results obtained from the studies of flux and shell-to-shell energy transfer are consistent with each other.Comment: 27 pages REVTEX; 14 ps figure

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for ddc2.2d \ge d_c \approx 2.2. The renormalized viscosity ν\nu^* and resistivity η\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν=0.36\nu^*=0.36 and η=0.85\eta^*=0.85. As rAr_A is decreased, ν\nu^* increases and η\eta^* decreases, untill rA0.25r_A \approx 0.25 where both ν\nu^* and η\eta^* are approximately zero. For large dd, both ν\nu^* and η\eta^* vary as d1/2d^{-1/2}. The renormalized parameters for the case σc1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001

    Characteristics of constrained turbulent transport in flux-driven toroidal plasmas

    Get PDF
    We study the dynamics of turbulence transport subject to a constraint on the profile formation and relaxation, dominated by the ion temperature gradient modes, within the framework of adiabatic electron response using a flux-driven global gyro-kinetic toroidal code, GKNET. We observe exponentially constrained profiles, with two different scale lengths, that are spatially constant in each region in higher input power regimes. The profiles are smoothly connected in the knee region located at 1/2−2/3 of the minor radius, outside which the gradient is steepened and shows a weak confinement improvement. Based on the probability density function analysis of heat flux eddies, the power law demonstrates a dependence on the eddy size S, as P∼S[−α], which distinguishes events into diffusive and non-diffusive parts including the validation of quasi-linear hypotheses. Radially localized avalanches and global bursts, which exhibit different spatial scales, play central roles in giving rise to constrained profiles on an equal footing. It is also found that the E×B shear layers are initiated by the global bursts, which evolve downward on a slow time scale across the knee region and play a role in adjusting the profile by increasing the gradient
    corecore