3,174 research outputs found
Quasi-Elastic Reaction and Spin Response Functions of the Deuteron
We calculated response functions of the deuteron for charge exchange
processes, including the final state interaction between two protons. Using
them we evaluated the double differential cross section and polarization
observables of  by means of plane wave impulse
approximation with an optimal factorization. Calculation well reproduced the
shape of the energy spectra of the cross section, though somewhat overestimated
the magnitude. It also reproduced the spin observables well.Comment: 19 pages of LaTeX (4 figures not included, hard copy available upon
  request), UT-Komaba 93-2
Recommended from our members
A Framework for 3D Pushbroom Imaging
Pushbroom cameras produce one-dimensional images of a scene with high resolution at a high frame-rate. As a result, they provide superior data compared to conventional two-dimensional cameras in cases where the scene of interest can be temporally scanned. In this paper, we consider the problem of recovering the structure of a scene using a set of pushbroom cameras. Although pushbroom cameras have been used to recover scene structure in the past, the algorithms for recovery were developed separately for different camera motions such as translation and rotation. In this paper, we present a general framework of structure recovery for pushbroom cameras with 6 degree-of-freedom motion. We analyze the translation and rotation cases using our framework and demonstrate that several previous results are really special cases of our result. Using this framework, we also show that three or more pushbroom cameras can be used to compute scene structure as well as motion of translation or rotation. We conclude with a set of experiments that demonstrate the use of pushbroom imaging to recover structure from unknown motion
Spin-density-wave transition of (TMTSF)PF at high magnetic fields
The transverse magnetoresistance of the Bechgaard salt (TMTSF)PF has
been measured for various pressures, with the field up to 24 T parallel to the
lowest conductivity direction c. A quadratic behavior is observed in
the magnetic field dependence of the spin-density-wave (SDW) transition
temperature . With increasing pressure, 
decreases and the coefficient of the quadratic term increases. These results
are consistent with the prediction of the mean-field theory based on the
nesting of the quasi one-dimensional Fermi surface. Using a mean field theory,
 for the perfect nesting case is estimated as about 16 K. This
means that even at ambient pressure where  is 12 K, the SDW
phase of (TMTSF)PF is substantially suppressed by the
two-dimensionality of the system.Comment: 11pages,6figures(EPS), accepted for publication in PR
Theory of the beta-type Organic Superconductivity under Uniaxial Compression
We study theoretically the shift of the superconducting transition
temperature (Tc) under uniaxial compression in beta-type organic
superconductors, beta-(BEDT-TTF)2I3 and beta-(BDA-TTP)2X[X=SbF6,AsF6], in order
to clarify the electron correlation, the spin frustration and the effect of
dimerization. The transfer integrals are calculated by the extended Huckel
method assuming the uniaxial strain and the superconducting state mediated by
the spin fluctuation is solved using Eliashberg's equation with the
fluctuation-exchange approximation. The calculation is carried out on both the
dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found
that (i) the behavior of Tc in beta-(BEDT-TTF)2I3 with a stronger dimerization
is well reproduced by the dimer model, while that in weakly dimerized
beta-BDA-TTP salts is rather well reproduced by the two-band model, and (ii)
the competition between the spin frustration and the effect induced by the
fluctuation is important in these materials, which causes nonmonotonic shift of
Tc against uniaxial compression.Comment: 18 pages, 16 figures, 2 tabl
- …
