119 research outputs found

    Imaging Localized States in Graphene Nanostructures

    Full text link
    Probing techniques with spatial resolution have the potential to lead to a better understanding of the microscopic physical processes and to novel routes for manipulating nanostructures. We present scanning-gate images of a graphene quantum dot which is coupled to source and drain via two constrictions. We image and locate conductance resonances of the quantum dot in the Coulomb-blockade regime as well as resonances of localized states in the constrictions in real space.Comment: 18 pages, 7 figure

    Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting

    Get PDF
    We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tight-binding model. First, we consider the magnetoconductance of such rings and observe the Aharonov-Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm oscillations are suppressed. Results for both clean (ballistic) and disordered (diffusive) rings are presented. Second, we study rings with smooth mass boundary that are weakly coupled to leads. We show that the valley degeneracy of the eigenstates in closed graphene rings can be lifted by a small magnetic flux, and that this lifting can be observed in the transport properties of the system.Comment: 12 pages, 9 figure

    J/ψJ/\psi suppression in Pb+Pb collisions and pTp_T broadening

    Full text link
    We have analysed the NA50 data, on the centrality dependence of pTp_T broadening of J/ψJ/\psi's, in Pb+Pb collisions, at the CERN-SPS. The data were analysed in a QCD based model, where J/ψJ/\psi's are suppressed in 'nuclear' medium. Without any free parameter, the model could explain the NA50 pTp_T broadening data. The data were also analysed in a QGP based threshold model, where J/ψJ/\psi suppression is 100% above a critical density. The QGP based model could not explain the NA50 pTp_T broadening data. We have also predicted the centrality dependence of J/ψJ/\psi suppression and pTp_T broadening at RHIC energy. Both the models, the QGP based threshold model and the QCD based nuclear absorption model, predict pTp_T broadening very close to each other.Comment: The paper was completely revised. The conclusion is also changed. 5 pages, 4 figure

    Triple-Pomeron Matrix Model for Dispersive Corrections to Nucleon-Nucleus Total Cross Section

    Full text link
    Dispersive corrections to the total cross section for high-energy scattering from a heavy nucleus are calculated using a matrix model, based on the triple-Pomeron behavior of diffractive scattering from a single nucleon, for the cross section operator connecting different states of the projectile nucleon . Energy-dependent effects due to the decrease in longitudinal momentum transfers and the opening of more channels with increasing energy are included. The three leading terms in an expansion in the number of inelastic transitions are evaluated and compared to exact results for the model in the uniform nuclear density approximation for the the scattering of nucleons from Pb^{208} for laboratory momenta ranging from 50 to 200 GeV/c.Comment: 16 pages, 2 figures, RevTex

    Electroproduction of Charmonia off Nuclei

    Get PDF
    In a recent publication we have calculated elastic charmonium production in ep collisions employing realistic charmonia wave functions and dipole cross sections and have found good agreement with the data in a wide range of s and Q^2. Using the ingredients from those calculations we calculate exclusive electroproduction of charmonia off nuclei. Here new effects become important, (i) color filtering of the c-cbar pair on its trajectory through nuclear matter, (ii) dependence on the finite lifetime of the c-cbar fluctuation (coherence length) and (iii) gluon shadowing in a nucleus compared to the one in a nucleon. Total coherent and incoherent cross sections for C, Cu and Pb as functions of s and Q^2 are presented together with some differential cross sections. The results can be tested with future electron-nucleus colliders or in peripheral collisions of ultrarelativistic heavy ions.Comment: 21 pages of Latex including 14 figures; few misprints are fixe

    Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    Get PDF
    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    Dirac Spectrum in Piecewise Constant One-Dimensional Potentials

    Get PDF
    We study the electronic states of graphene in piecewise constant potentials using the continuum Dirac equation appropriate at low energies, and a transfer matrix method. For superlattice potentials, we identify patterns of induced Dirac points which are present throughout the band structure, and verify for the special case of a particle-hole symmetric potential their presence at zero energy. We also consider the cases of a single trench and a p-n junction embedded in neutral graphene, which are shown to support confined states. An analysis of conductance across these structures demonstrates that these confined states create quantum interference effects which evidence their presence.Comment: 10 pages, 12 figures, additional references adde

    Progress in the determination of the J/ψ−πJ/\psi-\pi cross section

    Full text link
    Improving previous calculations, we compute the J/ψπ→charmedmesonsJ/\psi \pi\to {charmed mesons} cross section using QCD sum rules. Our sum rules for the J/ψπ→DˉD∗J/\psi \pi\to \bar{D} D^*, DDˉ∗D \bar{D}^*, Dˉ∗D∗{\bar D}^* D^* and DˉD{\bar D} D hadronic matrix elements are constructed by using vaccum-pion correlation functions, and we work up to twist-4 in the soft-pion limit. Our results suggest that, using meson exchange models is perfectly acceptable, provided that they include form factors and that they respect chiral symmetry. After doing a thermal average we get ∌0.3\sim 0.3 mb at T=150\MeV.Comment: 22 pages, RevTeX4 including 7 figures in ps file

    On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy

    Full text link
    We study the normal state electronic excitations probed by angle resolved photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to establish explicit criteria for determining the Fermi surface from ARPES data on strongly interacting systems where sharply defined quasiparticles do not exist and the dispersion is very weak in parts of the Brillouin zone. Additional complications arise from strong matrix element variations within the zone. We present detailed results as a function of incident photon energy, and show simple experimental tests to distinguish between an intensity drop due to matrix element effects and spectral weight loss due to a Fermi crossing. We reiterate the use of polarization selection rules in disentangling the effect of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite all the complications, the Fermi surface can be determined unambiguously: it is a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures remain the sam
    • 

    corecore