1,232 research outputs found

    Neutrino mixing in the seesaw model

    Get PDF
    In the seesaw model with hierarchical Dirac masses, the neutrino mixing angle exhibits the behavior of a narrow resonance. In general, the angle is strongly suppressed, but it can be maximal for special parameter values. We delineate the small regions in which this happens, for the two flavor problem. On the other hand, the physical neutrino masses are hierarchical, in general, except in a large part of the region in which the mixing angle is sizable, where they are nearly degenerate. Our general analysis is also applicable to the RGE of neutrino mass matrix, where we find analytic solutions for the running of physical parameters, in addition to a complex RGE invariant relating them. It is also shown that, if one mixing angle is small, the three neutrino problem reduces to two, two flavor problems.Comment: 19 pages, 4 figures; added new sections on RGE effects and universal seesaw; version to appear in EPJ

    Adhesion-induced lateral phase separation of multi-component membranes: the effect of repellers and confinement

    Full text link
    We present a theoretical study for adhesion-induced lateral phase separation for a membrane with short stickers, long stickers and repellers confined between two hard walls. The effects of confinement and repellers on lateral phase separation are investigated. We find that the critical potential depth of the stickers for lateral phase separation increases as the distance between the hard walls decreases. This suggests confinement-induced or force-induced mixing of stickers. We also find that stiff repellers tend to enhance, while soft repellers tend to suppress adhesion-induced lateral phase separation

    Data science & digital society

    Get PDF
    Data Science looks at raw numbers and informational objects created by different disciplines. The Digital Society creates information and numbers from many scientiHic disciplines. The amassment of data though makes is hard to Hind structures and requires a skill full analysis of this massive raw material. The thoughts presented here on DS2 - Data Science & Digital Society analyze these challenges and offers ways to handle the questions arising in this evolving context. We propose three levels of analysis and lay out how one can react to the challenges that come about. Concrete examples concern Credit default swaps, Dynamic Topic modeling, Crypto currencies and above all the quantitative analysis of real data in a DS2 context

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    Varied Signature Splitting Phenomena in Odd Proton Nuclei

    Full text link
    Varied signature splitting phenomena in odd proton rare earth nuclei are investigated. Signature splitting as functions of KK and jj in the angular momentum projection theory is explicitly shown and compared with those of the particle rotor model. The observed deviations from these rules are due to the band mixings. The recently measured 169^{169}Ta high spin data are taken as a typical example where fruitful information about signature effects can be extracted. Six bands, two of which have not yet been observed, were calculated and discussed in detail in this paper. The experimentally unknown band head energies are given
    corecore