1,508 research outputs found

    A precise CNOT gate in the presence of large fabrication induced variations of the exchange interaction strength

    Get PDF
    We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a Heisenberg Hamiltonian. This method easily applies to a general two-qubit Hamiltonian. We show how the robust CNOT gate can achieve a very high fidelity when a single application of the composite rotations is combined with a modest level of Hamiltonian characterisation. Operating the robust CNOT gate in a suitably characterised system means concatenation of the composite pulse is unnecessary, hence reducing operation time, and ensuring the gate operates below the threshold required for fault-tolerant quantum computation.Comment: 9 pages, 8 figure

    Asymmetric quantum error correction via code conversion

    Full text link
    In many physical systems it is expected that environmental decoherence will exhibit an asymmetry between dephasing and relaxation that may result in qubits experiencing discrete phase errors more frequently than discrete bit errors. In the presence of such an error asymmetry, an appropriately asymmetric quantum code - that is, a code that can correct more phase errors than bit errors - will be more efficient than a traditional, symmetric quantum code. Here we construct fault tolerant circuits to convert between an asymmetric subsystem code and a symmetric subsystem code. We show that, for a moderate error asymmetry, the failure rate of a logical circuit can be reduced by using a combined symmetric asymmetric system and that doing so does not preclude universality.Comment: 5 pages, 8 figures, presentation revised, figures and references adde

    Long-range adiabatic quantum state transfer through a linear array of quantum dots

    Full text link
    We introduce an adiabatic long-range quantum communication proposal based on a quantum dot array. By adiabatically varying the external gate voltage applied on the system, the quantum information encoded in the electron can be transported from one end dot to another. We numerically solve the Schr\"odinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. We also investigate the adiabatic passage in a more realistic system in the presence of inevitable fabrication imperfections. This method provides guidance for future realizations of adiabatic quantum state transfer in experiments.Comment: 7 pages, 7 figure

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure
    corecore