652 research outputs found

    Apparent Horizons with Nontrivial Topology and the Hyperhoop Conjecture in Six-Dimensional Space-Times

    Full text link
    We investigate the validity of the hyperhoop conjecture, which claims to determine a necessary and sufficient condition for the formation of black hole horizons in higher-dimensional space-times. Here we consider momentarily static, conformally flat initial data sets each describing a gravitational field of uniform massive k-sphere sources, for k=1,2, on the five-dimensional Cauchy surface. The numerical result shows the validity of the hyperhoop conjecture for a wide range of model parameters. We also confirm for the first time the existence of an apparent horizon homeomorphism to S**2 x S**2 or S**1 x S**3, which is a higher-dimensional generalization of the black ring.Comment: 17 pages, 12 figures. to appear in Phys. Rev.

    Black ring formation in particle systems

    Full text link
    It is known that the formation of apparent horizons with non-spherical topology is possible in higher-dimensional spacetimes. One of these is the black ring horizon with S1×SD−3S^1\times S^{D-3} topology where DD is the spacetime dimension number. In this paper, we investigate the black ring horizon formation in systems with nn-particles. We analyze two kinds of system: the high-energy nn-particle system and the momentarily-static nn-black-hole initial data. In the high-energy particle system, we prove that the black ring horizon does not exist at the instant of collision for any nn. But there remains a possibility that the black ring forms after the collision and this result is not sufficient. Because calculating the metric of this system after the collision is difficult, we consider the momentarily-static nn-black-hole initial data that can be regarded as a simplified nn-particle model and numerically solve the black ring horizon that surrounds all the particles. Our results show that there is the minimum particle number that is necessary for the black ring formation and this number depends on DD. Although many particle number is required in five-dimensions, n=4n=4 is sufficient for the black ring formation in the D≥7D\ge 7 cases. The black ring formation becomes easier for larger DD. We provide a plausible physical interpretation of our results and discuss the validity of Ida and Nakao's conjecture for the horizon formation in higher-dimensions. Finally we briefly discuss the probable methods of producing the black rings in accelerators.Comment: 26 pages, 7 figure

    Black hole initial data in Gauss-Bonnet gravity: Momentarily static case

    Full text link
    We study the method for generating the initial data of black hole systems in Gauss-Bonnet (GB) gravity. The initial data are assumed to be momentarily static and conformally flat. Although the equation for the conformal factor is highly nonlinear, it is successfully solved by numerical relaxation for one-black-hole and two-black-hole systems. The common apparent horizon is studied in the two-black-hole initial data, and the result suggests that the Penrose inequalities are satisfied in this system. This is the first step for simulating black hole collisions in higher-curvature theories.Comment: 30 pages, 10 figures, submitted to PR

    Nonaxisymmetric instability of rapidly rotating black hole in five dimensions

    Full text link
    We present results from numerical solution of Einstein's equation in five dimensions describing evolution of rapidly rotating black holes. We show, for the first time, that the rapidly rotating black holes in higher dimensions are unstable against nonaxisymmetric deformation; for the five-dimensional case, the critical value of spin parameter for onset of the instability is ≈0.87\approx 0.87.Comment: 4 pages, 3 figures, accepted for publication in PRD(R

    Close-limit analysis for head-on collision of two black holes in higher dimensions: Brill-Lindquist initial data

    Full text link
    Motivated by the TeV-scale gravity scenarios, we study gravitational radiation in the head-on collision of two black holes in higher dimensional spacetimes using a close-limit approximation. We prepare time-symmetric initial data sets for two black holes (the so-called Brill-Lindquist initial data) and numerically evolve the spacetime in terms of a gauge invariant formulation for the perturbation around the higher-dimensional Schwarzschild black holes. The waveform and radiated energy of gravitational waves emitted in the head-on collision are clarified. Also, the complex frequencies of fundamental quasinormal modes of higher-dimensional Schwarzschild black holes, which have not been accurately derived so far, are determined.Comment: 27 pages, 8 figures, published versio

    Spectral analysis of aegelin isolated from maja leaves (Aegle marmelos Corr.)

    Get PDF
    Aegelin is an alkaloid which isolated from Maja (Aegle marmelos Corr.) leaves. The molecular structure of the compound contains a chiral carbon atom. In our earlier publications the existence and influence of a chiral carbon atom have not been discussed yet. The existing of the chiral carbon atom gave rise two pair of doublets at d 3.67 J=3.4 Hz and d 3.43 J=8.5 Hz in the proton nmr spectrum. The doublets are signal of two proton which attached on adjacent atom of the chiral carbon atom which is confirmed bythe two dimension nmr spectrum (HMQC). The two protons are magnetic unequivalent which cause their chemical shifts are different. The protons appear as two doublet with different J value because its couple to a proton attached at the chiral carbon atom and the spin-spin splitting is observed. The existence of the two pairs of the doublets at d 3.67 d,J=3.4 Hz and d 3.42 d,J=8.5 Hz because the isolated aegelin from E.marmelos leaves contains of its enantimeer.Key words: E. marmelos, aegelin, enantiomeer, spectroscop

    Highly distorted apparent horizons and the hoop conjecture

    Full text link
    By analyzing the apparent horizon (AH) formation in the collision of two pp-waves with rectangular sources in four dimensions, we study to what extent the AH can be distorted without violating the energy conditions. It is shown that the highly distorted AH can form in this system although it cannot be arbitrarily long. The hoop conjecture is examined for the formation of such highly distorted AHs, and our result gives a strong support to the hoop conjecture. We also point out the possible relation between the AH topology theorem and the hoop conjecture.Comment: 10 pages, 5 figures, submitted to PRD(R

    On Detection of Black Hole Quasi-Normal Ringdowns: Detection Efficiency and Waveform Parameter Determination in Matched Filtering

    Full text link
    Gravitational radiation from a slightly distorted black hole with ringdown waveform is well understood in general relativity. It provides a probe for direct observation of black holes and determination of their physical parameters, masses and angular momenta (Kerr parameters). For ringdown searches using data of gravitational wave detectors, matched filtering technique is useful. In this paper, we describe studies on problems in matched filtering analysis in realistic gravitational wave searches using observational data. Above all, we focus on template constructions, matches or signal-to-noise ratios (SNRs), detection probabilities for Galactic events, and accuracies in evaluation of waveform parameters or black hole hairs. We have performed matched filtering analysis for artificial ringdown signals which are generated with Monte-Carlo technique and injected into the TAMA300 observational data. It is shown that with TAMA300 sensitivity, the detection probability for Galactic ringdown events is about 50% for black holes of masses greater than 20M⊙20 M_{\odot} with SNR >10> 10. The accuracies in waveform parameter estimations are found to be consistent with the template spacings, and resolutions for black hole masses and the Kerr parameters are evaluated as a few % and ∼40\sim 40 %, respectively. They can be improved up to <0.9< 0.9 % and <24< 24 % for events of SNR≥10{\rm SNR} \ge 10 by using fine-meshed template bank in the hierarchical search strategy.Comment: 10 pages, 10 figure

    Detecting gravitational waves from inspiraling binaries with a network of detectors : coherent versus coincident strategies

    Get PDF
    We compare two strategies of multi-detector detection of compact binary inspiral signals, namely, the coincidence and the coherent. For simplicity we consider here two identical detectors having the same power spectral density of noise, that of initial LIGO, located in the same place and having the same orientation. We consider the cases of independent noise as well as that of correlated noise. The coincident strategy involves separately making two candidate event lists, one for each detector, and from these choosing those pairs of events from the two lists which lie within a suitable parameter window, which then are called as coincidence detections. The coherent strategy on the other hand involves combining the data phase coherently, so as to obtain a single network statistic which is then compared with a single threshold. Here we attempt to shed light on the question as to which strategy is better. We compare the performances of the two methods by plotting the Receiver Operating Characteristics (ROC) for the two strategies. Several of the results are obtained analytically in order to gain insight. Further we perform numerical simulations in order to determine certain parameters in the analytic formulae and thus obtain the final complete results. We consider here several cases from the relatively simple to the astrophysically more relevant in order to establish our results. The bottom line is that the coherent strategy although more computationally expensive in general than the coincidence strategy, is superior to the coincidence strategy - considerably less false dismissal probability for the same false alarm probability in the viable false alarm regime.Comment: 18 pages, 10 figures, typo correcte

    Template banks to search for compact binaries with spinning components in gravitational wave data

    Get PDF
    Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo and GEO600. If the components of the binary posess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen and Vallisneri. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the non-spinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses non-spinning templates. We recommend the continued use of the non-spinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.Comment: 11 pages, 3 figure
    • …
    corecore