54 research outputs found

    Platelet-Activating Factor Induces TLR4 Expression in Intestinal Epithelial Cells: Implication for the Pathogenesis of Necrotizing Enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF), bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs) are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC) lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line). PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC

    State-of-the-Art of Cellulose Nanocrystals and Optimal Method for their Dispersion for Construction-Related Applications

    No full text
    In this paper, we reviewed the existing literature on the fabrication of nanocomposites based on cellulose and cellulose nanocrystals (CNCs), and analyzed their dispersion mechanism with respect to their use in the field of construction. First, the existing literature on CNC-based nanocomposites that exhibit the physical and chemical properties of nanocellulose and CNCs was reviewed. Next, keeping the use of these nanocomposites in the field of construction in mind, we determined the optimal mechanical method for their dispersion as an alternative to the currently used harmful chemical techniques. To this end, we evaluated the dispersibility of colloidal CNCs using two dispersion methods: magnetic stirring (for stirring times of 60 min, 120 min, and 180 min) and high-pressure dispersion (at pressures of 345 × 105 Pa, 1035 × 105 Pa, and 1587 × 105 Pa, and one to three dispersion passes). The optimal dispersion conditions were determined by analyzing the size and zeta potential of the CNC particles. It was found that the difference in the average diameter was reduced by approximately 76% at 1587 × 105 Pa during high-pressure dispersion

    Ultrafast Graphene Light Emitters

    No full text
    Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications
    • …
    corecore