111 research outputs found

    “In vivo” free radical scavenging efficacy of beebread against biochemical alterations induced by Salmonella enterica serovar Typhimurium

    Get PDF
    Salmonella typhimurium induced hepatic and renal toxicity was investigated using standard laboratory techniques in mice. BALB/c mice were divided into ten groups (8 mice per group). Group (Gp) 1 served as normal, and were administrated with normal saline orally, and Gp2 served as infected, and were injected bacteria (2×104 CFU/mL) only, while Gp3, 5, 7 and, 9 were administrated beebread (250 mg/kg body weight) of Helianthus annus, Brassica campestris, Zea mays and vitamin C respectively for 21 days without Salmonella infection, and Gp 4, 6, 8 and, 10 were administrated beebread (250 mg/kg bw) of Helianthus annus, Brassica campestris, Zea mays and vitamin C respectively for 21 days with a bacterial infection. Serum activities of hepatic and renal enzymes were analysed. A significant increase was observed in biochemical enzymes in Salmonella infected group on the 5th day but after the administration of beebread of different crops, relief was observed to be near normal. This alleviation was more with beebread of Helianthus annus. Furthermore, administration of beebread without bacteria did not show any negative effects in mice. Thus, the results indicate that aqueous extract of beebread of different crops is safe and can be exploited in healthcare delivery systems.

    Lipocalin 2 is protective against E. coli pneumonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipocalin 2 is a bacteriostatic protein that binds the siderophore enterobactin, an iron-chelating molecule produced by <it>Escherichia coli </it>(<it>E. coli</it>) that is required for bacterial growth. Infection of the lungs by <it>E. coli </it>is rare despite a frequent exposure to this commensal bacterium. Lipocalin 2 is an effector molecule of the innate immune system and could therefore play a role in hindering growth of <it>E. coli </it>in the lungs.</p> <p>Methods</p> <p>Lipocalin 2 knock-out and wild type mice were infected with two strains of <it>E. coli</it>. The lungs were removed 48 hours post-infection and examined for lipocalin 2 and MMP9 (a myeloid marker protein) by immunohistochemical staining and western blotting. Bacterial numbers were assessed in the lungs of the mice at 2 and 5 days after infection and mortality of the mice was monitored over a five-day period. The effect of administering ferrichrome (an iron source that cannot be bound by lipocalin 2) along with E.coli was also examined.</p> <p>Results</p> <p>Intratracheal installation of <it>E. coli </it>in mice resulted in strong induction of lipocalin 2 expression in bronchial epithelium and alveolar type II pneumocytes. Migration of myeloid cells to the site of infection also contributed to an increased lipocalin 2 level in the lungs. Significant higher bacterial numbers were observed in the lungs of lipocalin 2 knock-out mice on days 2 and 5 after infection with <it>E. coli </it>(p < 0.05). In addition, a higher number of <it>E. coli </it>was found in the spleen of surviving lipocalin 2 knock-out mice on day 5 post-infection than in the corresponding wild-type mice (p < 0.05). The protective effect against <it>E. coli </it>infection in wild type mice could be counteracted by the siderophore ferrichrome, indicating that the protective effect of lipocalin 2 depends on its ability to sequester iron.</p> <p>Conclusions</p> <p>Lipocalin 2 is important for protection of airways against infection by <it>E. coli</it>.</p

    Evolution of enhanced innate immune evasion by SARS-CoV-2

    Get PDF
    Emergence of SARS-CoV-2 variants of concern (VOCs) suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on characterisation of spike changes in VOCs, mutations outside spike likely contribute to adaptation. Here we used unbiased abundance proteomics, phosphoproteomics, RNAseq and viral replication assays to show that isolates of the Alpha (B.1.1.7) variant3 more effectively suppress innate immune responses in airway epithelial cells, compared to first wave isolates. We found that Alpha has dramatically increased subgenomic RNA and protein levels of N, Orf9b and Orf6, all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful Alpha transmission, and may increase in vivo replication and duration of infection4. The importance of mutations outside Spike in adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the Delta and Omicron N/Orf9b regulatory regions

    Determinants of preventable readmissions in the United States: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital readmissions are a leading topic of healthcare policy and practice reform because they are common, costly, and potentially avoidable events. Hospitals face the prospect of reduced or eliminated reimbursement for an increasing number of preventable readmissions under nationwide cost savings and quality improvement efforts. To meet the current changes and future expectations, organizations are looking for potential strategies to reduce readmissions. We undertook a systematic review of the literature to determine what factors are associated with preventable readmissions.</p> <p>Methods</p> <p>We conducted a review of the English language medicine, health, and health services research literature (2000 to 2009) for research studies dealing with unplanned, avoidable, preventable, or early readmissions. Each of these modifying terms was included in keyword searches of readmissions or rehospitalizations in Medline, ISI, CINAHL, The Cochrane Library, ProQuest Health Management, and PAIS International. Results were limited to US adult populations.</p> <p>Results</p> <p>The review included 37 studies with significant variation in index conditions, readmitting conditions, timeframe, and terminology. Studies of cardiovascular-related readmissions were most common, followed by all cause readmissions, other surgical procedures, and other specific-conditions. Patient-level indicators of general ill health or complexity were the commonly identified risk factors. While more than one study demonstrated preventable readmissions vary by hospital, identification of many specific organizational level characteristics was lacking.</p> <p>Conclusions</p> <p>The current literature on preventable readmissions in the US contains evidence from a variety of patient populations, geographical locations, healthcare settings, study designs, clinical and theoretical perspectives, and conditions. However, definitional variations, clear gaps, and methodological challenges limit translation of this literature into guidance for the operation and management of healthcare organizations. We recommend that those organizations that propose to reward reductions in preventable readmissions invest in additional research across multiple hospitals in order to fill this serious gap in knowledge of great potential value to payers, providers, and patients.</p

    Role of Caustic Addition in Bitumen-Clay Interactions

    Get PDF
    Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable

    Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Abstract Background The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. Methods We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990–92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45–64 years (1987–89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Results Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. Conclusion The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI

    Inhibition of Biofilm Formation, Quorum Sensing and Infection in Pseudomonas aeruginosa by Natural Products-Inspired Organosulfur Compounds

    Get PDF
    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed

    Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics

    Get PDF
    Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections
    corecore