2,488 research outputs found

    Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model

    Full text link
    We present a symmetry-projected configuration mixing scheme to describe ground and excited states, with well defined quantum numbers, of the two-dimensional Hubbard model with nearestneighbor hopping and periodic boundary conditions. Results for the half-filled 2{\times}4, 4{\times}4, and 6{\times}6 lattices, as well as doped 4 {\times} 4 systems, compare well with available results, both exact and from other state-of-the-art approximations. We report spectral functions and density of states obtained from a well-controlled ansatz for the (Ne {\pm} 1)-electron system. Symmetry projected methods have been widely used for the many-body nuclear physics problem but have received little attention in the solid state community. Given their relatively low (mean-field) computational cost and the high quality of results here reported, we believe that they deserve further scrutiny

    A proposal for a new type of thin-film field-emission display by edge breakdown of MIS structure

    Get PDF
    A new type of field emission display(FED) based on an edge-enhance electron emission from metal-insulator-semiconductor (MIS) thin film structure is proposed. The electrons produced by an avalanche breakdown in the semiconductor near the edge of a top metal electrode are initially injected to the thin film of an insulator with a negative electron affinity (NEA), and then are injected into vacuum in proximity to the top electrode edge. The condition for the deep-depletition breakdown near the edge of the top metal electrode is analytically found in terms of ratio of the insulator thickness to the maximum (breakdown) width of the semiconductor depletition region: this ratio should be less than 2/(3 \pi - 2) = 0.27. The influence of a neighboring metal electrode and an electrode thickness on this condition are analyzed. Different practical schemes of the proposed display with a special reference to M/CaF_2/Si structure are considered.Comment: 11 pages, 5 figure

    SO/Sp Monopoles and Branes with Orientifold 3 Plane

    Get PDF
    We study BPS monopoles in 4 dimensional N=4 SO(N) and Sp(N)Sp(N) super Yang-Mills theories realized as the low energy effective theory of NN (physical and its mirror) parallel D3 branes and an {\it Orientifold 3 plane} with D1 branes stretched between them in type IIB string theory. Monopoles on D3 branes give the natural understanding by embedding in SU(N) through the constraints on both the asymptotic Higgs field (corresponding to the horizontal positions of D3 branes) and the magnetic charges (corresponding to the number of D1 branes) imposed by the O3 plane. The compatibility conditions of Nahm data for monopoles for these groups can be interpreted very naturally through the D1 branes in the presence of O3 plane.Comment: 18 pages, Latex with RevTex, 1 table, 4 figures, v2: Clarified the introduction and improved on the supersymmetric theory on D1 branes in page 7 and 8 and this final version to appear in Phys.Rev.

    Domain Walls in MQCD and Monge-Ampere Equation

    Full text link
    We study Witten's proposal that a domain wall exists in M-theory fivebrane version of QCD (MQCD) and that it can be represented as a supersymmetric three-cycle in G_2 holonomy manifold. It is shown that equations defining the U(1) invariant domain wall for SU(2) group can be reduced to the Monge-Ampere equation. A proof of an algebraic formula of Kaplunovsky, Sonnenschein and Yankielowicz is presented. The formal solution of equations for domain wall is constructed.Comment: Latex, 18 pages, section 4.2 modified, typos correcte

    On the Z_2 Monopole of Spin(10) Gauge Theories

    Full text link
    An "expanded" description is introduced to examine the spinor-monopole identification proposed by Strassler for four-dimensional N\cal N = 1 supersymmetric Spin(10) gauge theories with matter in F vector and N spinor representations. It is shown that a Z_2 monopole in the "expanded" theory is associated with massive spinors of the Spin(10) theory. For N=2, two spinor case, we confirm this identification by matching the transformation properties of the two theories under SU(2) flavor symmetry. However, for N \ge 3, the transformation properties are not matched between the spinors and the monopole. This disagreement might be due to the fact that the SU(N) flavor symmetry of the Spin(10) theory is partially realized as an SU(2) symmetry in the "expanded" theory.Comment: 16 pages, LaTex, no figur

    The effect of social media communication on consumer perceptions of brands

    Get PDF
    Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models

    Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth

    Get PDF
    Background: A major challenge in sheep farming during the grazing season along the coast of south-western Norway is tick-borne fever (TBF) caused by the bacteria Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. Methods: A study was carried out in 2007 and 2008 to examine the prevalence of A. phagocytophilum infection and effect on weaning weight in lambs. The study included 1208 lambs from farms in Sunndal Ram Circle in Møre and Romsdal County in Mid-Norway, where ticks are frequently observed. All lambs were blood sampled and serum was analyzed by an indirect fluorescent antibody assay (IFA) to determine an antibody status (positive or negative) to A. phagocytophilum infection. Weight and weight gain and possible effect of infection were analyzed using ANOVA and the MIXED procedure in SAS. Results: The overall prevalence of infection with A. phagocytophilum was 55%. A lower weaning weight of 3% (1.34 kg, p < 0.01) was estimated in lambs seropositive to an A. phagocytophilum infection compared to seronegative lambs at an average age of 137 days. Conclusions: The results show that A. phagocytophilum infection has an effect on lamb weight gain. The study also support previous findings that A. phagocytophilum infection is widespread in areas where ticks are prevalent, even in flocks treated prophylactic with acaricides

    Matrix Model Description of Laughlin Hall States

    Full text link
    We analyze Susskind's proposal of applying the non-commutative Chern-Simons theory to the quantum Hall effect. We study the corresponding regularized matrix Chern-Simons theory introduced by Polychronakos. We use holomorphic quantization and perform a change of matrix variables that solves the Gauss law constraint. The remaining physical degrees of freedom are the complex eigenvalues that can be interpreted as the coordinates of electrons in the lowest Landau level with Laughlin's wave function. At the same time, a statistical interaction is generated among the electrons that is necessary to stabilize the ground state. The stability conditions can be expressed as the highest-weight conditions for the representations of the W-infinity algebra in the matrix theory. This symmetry provides a coordinate-independent characterization of the incompressible quantum Hall states.Comment: 31 pages, large additions on the path integral and overlaps, and on the W-infinity symmetr

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    Gauge Theories with Tensors from Branes and Orientifolds

    Get PDF
    We present brane constructions in Type IIA string theory for N=1 supersymmetric SO and Sp gauge theories with tensor representations using an orientifold 6-plane. One limit of these set-ups corresponds to N=2 theories previously constructed by Landsteiner and Lopez, while a different limit yields N=1 SO or Sp theories with a massless tensor and no superpotential. For the Sp-type orientifold projection comparison with the field theory moduli space leads us to postulate two new rules governing the stability of configurations of D-branes intersecting the orientifold. Lifting one of our configurations to M-theory by finding the corresponding curves, we re-derive the N=1 dualities for SO and Sp groups using semi-infinite D4 branes.Comment: Discussion on duality in U(N) with a symmetric or antisymmetric flavor added to Section 4. Typos fixe
    corecore