4,789 research outputs found

    Implications of R-parity violating supersymmetry for atomic and hadronic EDMs

    Full text link
    We calculate the electric dipole moments (EDM) of the neutral Hg(199) atom, deuteron, nucleons and neutral hyperons Lambda, Sigma(0) and Xi(0) in the framework of a generic SUSY model without R-parity conservation (RPV SUSY) on the basis of the SU(3) version of chiral perturbation theory (ChPT). We consider CP-violation in the hadronic sector induced by the chromoelectric quark dipole moments and CP-violating 4-quark effective interactions. From the null experimental results on the neutron and Hg(199) atom EDMs we derive limits on the imaginary parts of certain products Im(lambda' lambda'*) of the trilinear RPV-couplings and demonstrate that they are more stringent than those existing in the literature. Using these limits we give predictions for the EDMs of neutral hyperons. We also estimate the prospects of future storage ring experiments on the deuteron EDM and show that the expected improvement of the above limits in these experiments may reach several orders of magnitude.Comment: 11 pages, 1 figure, accepted for publication in Phys. Rev.

    Axial form factor of the nucleon in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).Comment: 23 pages, 5 figures, accepted for publication in J. Phys.

    D* K molecular structure of the Ds1(2460) meson

    Full text link
    We discuss a possible interpretation of the Ds1(2460) meson as a hadronic molecule - a bound state of D* and K mesons. Using a phenomenological Lagrangian approach we determine the strong Ds1 to Ds* pi0 and radiative Ds1 to Ds gamma decays. In order of magnitude our results for the partial strong and radiative decay widths are consistent with previous calculations.Comment: 11 pages, 3 figure

    Colloids dragged through a polymer solution: experiment, theory and simulation

    Get PDF
    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table

    Strong decays of radially excited mesons in a chiral approach

    Full text link
    We study radial excitations of pseudoscalar and vector (q bar q) mesons within a chiral approach. We derive a general form for a chiral Lagrangian describing processes involving excited pseudoscalar and vector mesons. The parameters of the chiral Lagrangian are fitted using data and previous calculations in the framework of the 3P0 model. Finite-width effects are examined and predictions for mesons previously not discussed are given. Available experimental data is analyzed whenever possible. Possible hints for exotic mesons and open interpretation-issues are discussed.Comment: 16 page

    Relativistic structure of one-meson and one-gluon exchange forces and the lower excitation spectrum of the Nucleon and the Delta

    Full text link
    The lower excitation spectrum of the nucleon and Δ\Delta is calculated in a relativistic chiral quark model. Corrections to the baryon mass spectrum from the second order self-energy and exchange diagrams induced by pion and gluon fields are estimated in the field -theoretical framework. Convergent results for the self-energy terms are obtained when including the intermediate quark and antiquark states with a total momentum up to j=25/2j=25/2. Relativistic one-meson and color-magnetic one-gluon exchange forces are shown to generate spin 0, 1, 2, etc. operators, which couple the lower and the upper components of the two interacting valence quarks and yield reasonable matrix elements for the lower excitation spectrum of the Nucleon and Delta. The only contribution to the ground state nucleon and Δ\Delta comes from the spin 1 operators, which correspond to the exchanged pion or gluon in the l=1 orbit, thus indicating, that the both pion exchange and color-magnetic gluon exchange forces can contribute to the spin of baryons. Is is shown also that the contribution of the color-electric component of the gluon fields to the baryon spectrum is enormously large (more than 500 MeV with a value αs=0.65\alpha_s=0.65) and one needs to restrict to very small values of the strong coupling constant or to exclude completely the gluon-loop corrections to the baryon spectrum. With this restriction, the calculated spectrum reproduces the main properties of the data, however needs further contribution from the two-pion exchange and instanton induced exchange (for the nucleon sector) forces in consistence with the realistic NN-interaction models.Comment: 15 pages, 4 figures, 7 table
    • …
    corecore