617 research outputs found

    Tet-Transgenic Rodents: a comprehensive, up-to date database

    Get PDF
    Here we introduce the "Tet-Transgenic Rodents" database, documenting most of the published Tet-transgenic mouse lines generated in the past 2 decades. Aside from the >500 mouse lines listed, it also includes the first of the recently reported Tet-transgenic rat models. Since the Tet technology comprises two essential components, a cis-acting promoter (P(tet)) and a trans-acting transactivator, the database has been organized accordingly. One section of the database summarizes the different transgenic mouse lines carrying mostly tissue specific promoters driving the Tet transactivator. Another section covers transgenic mouse lines carrying responder transgenes under P(tet) control. The few existing rat transgenic lines are listed correspondingly. It is the purpose of this database to facilitate the repeated use of preexisting, validated transgenic lines as a shortcut for further research

    Use of cultivar resistance and crop rotation with Bacillus subtilis for clubroot control in canola

    Get PDF
    Non-Peer ReviewedThis study was conducted to assess additional strategies potentially complimentary to cultivar resistance or biocontrol in control of clubroot. New granular Bacillus subtilis formulations and a seed dressing method were developed to facilitate biofungicide delivery in field trials. The granular formulations were applied in furrow during seeding at 50 kg/ha to a clubroot resistant (CR) and susceptible (CS) canola cultivar, respectively, in three field trials. The seed dressing applied approximately 1×105 to 5×106 cfu/seed doses of the biocontrol agent, and was evaluated on the CS cultivar seeded to different crop-rotation scenarios where the plots had a 1-year, 3-year, or 11-year break from last canola crop. Clubroot disease pressure was high at all trial sites with disease severity indexes (DSI) ranging from 69% to 98% on the CS cultivar. None of the granular formulations reduced clubroot substantially, whereas the CR cultivar showed a high effect, reducing DSI to below 15% and doubling the yield over that of CS cultivar. Plots of varying rotation showed a pattern of clubroot pathogen pressure, with those of 1-year break from canola being the highest. The DSI for all rotational scenarios was high, reaching 100% in short-rotation plots. Biofungicide seed dressing did not reduce DSI, but longer crop rotation often reduced gall size slightly, showed much milder above-ground damage, and increased the yield significantly relative to short rotation in two separate trials. Even a 3-year break from canola was highly beneficial, with the yield doubled as opposed to that with only 1-year break from canola

    A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tetracycline-controlled transactivator system is a powerful tool to control gene expression <it>in vitro </it>and to generate consistent and conditional transgenic <it>in vivo </it>model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator.</p> <p>Findings</p> <p>In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA) in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results.</p> <p>Conclusions</p> <p>The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.</p

    Abrogated cryptic activation of lentiviral transfer vectors

    Get PDF
    Despite significant improvements in lentivirus (LV) vector-based gene therapy there are still several safety risks using LV vectors including the potential formation of replication-competent LV particles. To address this shortcoming, we constructed a novel and safer gene transfer system using modified SIN-based LV gene transfer vectors. Central to our approach is a conditional deletion of the Ψ packaging signal after integration in the target genome. Here we demonstrate that after transduction of target cells, conventional SIN-based LV transfer vectors can still be mobilized. However mobilization is rendered undetectable if transductions are followed by a Cre/loxP-mediated excision of Ψ. Thus conditional elimination of the packaging signal may represent another advance in increasing the safety of LV vectors for gene therapeutic treatment of chronic diseases

    Toxin–antitoxin based transgene expression in mammalian cells

    Get PDF
    Long-term, recombinant gene expression in mammalian cells depends on the nature of the transgene integration site and its inherent properties to modulate transcription (epigenetic effects). Here we describe a method by which high transgene expression is achieved and stabilized in extensively proliferating cultures. The method is based on strict co-expression of the transgene with an antitoxin in cells that express the respective toxin. Since the strength of antitoxin expression correlates with an advantage for cell growth, the cells with strong antitoxin expression are enriched over time in cultures of heterogeneous cells. This principle was applied to CHO cell lines that conditionally express the toxin kid and that are transduced to co-express the antitoxin kis together with different transgenes of interest. Cultivation of pools of transfectants that express the toxin steadily increase their transgene expression within several weeks to reach a maximum that is up to 120-fold over the initial status. In contrast, average transgene expression drops in the absence of toxin expression. Together, we show that cells conditionally expressing kid can be employed to create overexpressing cells by a simple coupling of kis to the transgene of interest, without further manipulation and in absence of selectable drugs

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules

    Get PDF
    RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis

    A novel piggybac transposon inducible expression system identifies a role for akt signalling in primordial germ cell migration

    Get PDF
    In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development
    corecore