53 research outputs found

    Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy

    Full text link
    Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe quantum dot is investigated by polarization-resolved correlation spectroscopy. Spin memory effects extending over at least a few tens of nanoseconds have been directly observed in magnetic field and described quantitatively in terms of a simple rate equation model. We demonstrate an effective (68%) all-optical read-out of the single carrier spin state through probing the degree of circular polarization of exciton emission after capture of an oppositely charged carrier. The perturbation introduced by the pulsed optical excitation serving to study the spin dynamics has been found to be the main source of the polarization loss in the read-out process. In the limit of low laser power the read-out efficiency extrapolates to a value close to 100%. The measurements allowed us as well to determine neutral exciton spin relaxation time ranging from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.

    Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields

    Get PDF
    In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial --tens of teslas or more-- due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer MoS2_2, MoSe2_2, MoTe2_2, and WS2_2 in very high magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the exciton's 1s1s ground state but also its excited 2s2s, 3s3s, ..., nsns Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.Comment: updated; now also including data on MoTe2. Accepted & in press, Nature Commu

    Enhancement of electron magnetic susceptibility due to many-body interactions in monolayer MoSe2_2

    Full text link
    Employing the original, all-optical method, we quantify the magnetic susceptibility of a two-dimensional electron gas (2DEG) confined in the MoSe2_2 monolayer in the range of low and moderate carrier densities. The impact of electron-electron interactions on the 2DEG magnetic susceptibility is found to be particularly strong in the limit of, studied in detail, low carrier densities. Following the existing models, we derive g0=2.5±0.4g_0 = 2.5 \pm 0.4 for the bare (single particle) g-factor of the ground state electronic band in the MoSe2_2 monolayer. The derived value of this parameter is discussed in the context of estimations from other experimental approaches. Surprisingly, the conclusions drawn differ from theoretical ab-initio studies
    • …
    corecore