68 research outputs found
Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB
Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions
CCL21/CCR7 Prevents Apoptosis via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells
Previously, we confirmed that C-C chemokine receptor 7 (CCR7) promotes cell proliferation via the extracellular signal-regulated kinase (ERK) pathway, but its role in apoptosis of non-small cell lung cancer (NSCLC) cell lines remains unknown. A549 and H460 cells of NSCLC were used to examine the effect of CCL21/CCR7 on apoptosis using flow cytometry. The results showed that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a significant decline in the percent of apoptosis. Western blot and real-time PCR assays indicated that activation of CCR7 significantly caused upregulation of anti-apoptotic bcl-2 and downregulation of pro-apoptotic bax and caspase-3, but not p53, at both protein and mRNA levels. CCR7 small interfering RNA significantly attenuated these effects of exogenous CCL21. Besides, PD98059, a selective inhibitor of MEK that disrupts the activation of downstream ERK, significantly abolished these effects of CCL21/CCR7. Coimmunoprecipitation further confirmed that there was an interaction between p-ERK and bcl-2, bax, or caspase-3, particularly in the presence of CCL21. These results strongly suggest that CCL21/CCR7 prevents apoptosis by upregulating the expression of bcl-2 and by downregulating the expression of bax and caspase-3 potentially via the ERK pathway in A549 and H460 cells of NSCLC
Aarhus Sensor Green: A Fluorescent Probe for Singlet Oxygen
A tetrafluoro-substituted fluorescein
derivative covalently linked
to a 9,10-diphenyl anthracene moiety has been synthesized, and its
photophysical properties have been characterized. This compound, denoted
Aarhus Sensor Green (ASG), has distinct advantages for use as a fluorescent
probe for singlet molecular oxygen, O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>). In the least, ASG overcomes several limitations inherent
to the use of the related commercially available product called Singlet
Oxygen Sensor Green (SOSG). The functional behavior of both ASG and
SOSG derives from the fact that these weakly fluorescent compounds
rapidly react with singlet oxygen via a <sub>π</sub>2 + <sub>π</sub>4 cycloaddition to irreversibly yield a highly fluorescent
endoperoxide. The principal advantage of ASG over SOSG is that, at
physiological pH values, both ASG and the ASG endoperoxide (ASG-EP)
do not themselves photosensitize the production of singlet oxygen.
As such, ASG better fits the requirement of being a benign probe.
Although ASG readily enters a mammalian cell (i.e., HeLa) and responds
to the presence of intracellular singlet oxygen, its behavior in this
arguably complicated environment requires further investigation
Phase I Trial of Debio 1143, an Antagonist of Inhibitor of Apoptosis Proteins, Combined with Cisplatin Chemoradiotherapy in Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck.
Debio 1143 is an oral antagonist of inhibitor of apoptosis proteins, which enhances tumor response with concomitant chemoradiotherapy. Addition of Debio 1143 to cisplatin-based chemoradiotherapy in locally advanced squamous cell carcinomas of the head and neck (LA-SCCHN) was evaluated in a phase I/II study to determine the MTD and recommended phase II dose (RP2D). Here, phase I results are reported.
Treatment-naïve patients with LA-SCCHN (stages III/IVA/IVB) received Debio 1143 (100, 200, 300 mg/day), for 14 days every 3 weeks, with cisplatin (100 mg/m², every 3 weeks), for three cycles, and concomitant conventional fractionation radiotherapy (70 Gy/7 weeks). Dose-limiting toxicity (DLT) was evaluated over 9 weeks using continual reassessment.
Fourteen patients were treated/evaluable for DLT. Median age was 64.5 years, and all patients were current/former smokers. Primary tumors were hypopharynx, oropharynx (all human papillomavirus/p16 negative), larynx, and oral cavity. Two of six patients at 200 mg/day had DLT (grade 3 tubular necrosis, grade 3 aspartate aminotransferase/alanine aminotransferase increase, grade 4 febrile neutropenia, and grade 3 lipase increase), which was considered the MTD and RP2D. Common grade 3-4 adverse events were dysphagia (36%) and mucositis (29%). Laboratory abnormalities were frequent and generally mild, including anemia, white blood cell decrease, and increased creatinine. Addition of Debio 1143 did not compromise chemotherapy administration. Overall locoregional control rate at 18 months was 85%. Overall response rate was 85%, including 69% complete responses. Progression-free survival rate at 24 months was 74%.
The RP2D of Debio 1143 is 200 mg/day for 14 days, every 3 weeks, when combined with concomitant high-dose cisplatin chemoradiotherapy in LA-SCCHN. Debio 1143 addition to chemoradiotherapy was safe and manageable. Preliminary efficacy is encouraging and supports further development
- …