466 research outputs found

    Evidence of a mis-aligned secondary bar in the Large Magellanic Cloud

    Full text link
    Evidence of a mis-aligned secondary bar, within the primary bar of the Large Magellanic Cloud (LMC) is presented. The density distribution and the de-reddened mean magnitudes (I0I_0) of the red clump stars in the bar obtained from the OGLE II data are used for this study. The bar region which predominantly showed wavy pattern in the line of sight in \citet{a03} was located. These points in the X-Z plane delineate an S-shaped pattern, clearly indicating a mis-aligned bar. This feature is statistically significant and does not depend on the considered value of I0I_0 for the LMC center. The rest of the bar region were not found to show the warp or the wavy pattern. The secondary bar is found to be considerably elongated in the Z-direction, with an inclination of 66o^o.5 ±\pm 0o^o.9, whereas the undisturbed part of the primary bar is found to have an inclination of 15o^o.1 ±\pm 2o^o.7, such that the eastern sides are closer to us with respect to the western sides of both the bars. The PAmaj_{maj} of the secondary bar is found to be 108o^o.4 ±\pm 7o^o.3. The streaming motions found in the H I velocity map close to the LMC center could be caused by the secondary bar. The recent star formation and the gas distribution in LMC could be driven by the mis-aligned secondary bar.Comment: 10 pages, to appear in ApJ Letter

    Long-Lived Double-Barred Galaxies From Pseudo-Bulges

    Get PDF
    A large fraction of barred galaxies host secondary bars that are embedded in their large-scale primary counterparts. These are common also in gas poor early-type barred galaxies. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic NN-body models with which to study them. Here we report a new mechanism for generating such systems, namely the presence of rotating pseudo-bulges. We demonstate with high mass and force resolution collisionless NN-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not, however, rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. The pulsating nature of secondary bars may have important implications for understanding the central region of double-barred galaxies.Comment: Paper submitted to ApJ

    Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    Full text link
    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x 105Msolar,andagesof5to25millionyears.Theoverallstructureofthenuclearspiralsaswellasthesize,numberandmassesofthestarformingknotsareexplainedinthecontextofamassivegaseousnucleardisksubjecttoselfgravitationalinstabilitiesandtothegravitationalfieldcreatedbythenuclearbar.Accordingtothemodel,thegaseousdiskhasamassofabout5x107Msolarinsidearadiusof400pc,thebarhasaradiusof150pcandapatternspeedofabout0.5Myr1,andtheaveragemassaccretionrateintothecore(R<8pc)isabout0.01Msolar10^5 M_{solar}, and ages of 5 to 25 million years. The overall structure of the nuclear spirals as well as the size, number and masses of the star-forming knots are explained in the context of a massive gaseous nuclear disk subject to self-gravitational instabilities and to the gravitational field created by the nuclear bar. According to the model, the gaseous disk has a mass of about 5 x 10^7 M_{solar} inside a radius of 400 pc, the bar has a radius of 150 pc and a pattern speed of about 0.5 Myr^{-1}, and the average mass accretion rate into the core (R < 8 pc) is about 0.01 M_{solar} yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000

    Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies. II. NGC 247 and NGC 2403

    Full text link
    J, H, and K' images obtained with the Canada-France-Hawaii Telescope adaptive optics system are used to investigate the star-forming histories of the central regions of the Sc galaxies NGC 247 and NGC 2403. The brightest resolved red stars within 15 arcsec of the nucleus of each galaxy are red supergiants, indicating that the central few hundred parsecs of these galaxies experienced star formation within the last ~ 0.1 Gyr. However, when averaged over Gyr time scales, the star-forming histories of the inner disks of these galaxies have been remarkably similar, as expected if the long-term evolution of disks is defined by local characteristics such as mass density. It is demonstrated that NGC 247 and NGC 2403, like M33, harbour nuclear star clusters with stellar contents that differ from the surrounding central light concentrations. The nucleus of NGC 2403 is significantly bluer than that of the other two galaxies and the K-band surface brightnesses near the centers of NGC 247 and NGC 2403 are 1 -- 2 mag per square arcsec lower than in M33. Finally, it is noted that young or intermediate-age nuclear star clusters are a common occurence in nearby spirals, indicating that nuclear star formation in these objects is either continuous or episodic on time scales of 0.1 - 1 Gyr.Comment: 27 pages of text and 14 figures; to appear in the Astronomical Journa

    Self-reported depression symptoms in haemodialysis patients: Bi-factor structures of two common measures and their association with clinical factors

    Get PDF
    Copyright © 2018 Elsevier Inc. All rights reserved.Objective: To validate the factor structure of two common self-report depression tools in a large sample of haemodialysis (HD) patients and to examine their demographic and clinical correlates, including urine output, history of depression and transplantation. Methods: Factor structures of the Beck Depression Inventory (BDI-II) and Patient Health Questionnaire (PHQ-9) were evaluated using confirmatory factor analysis (CFA). Data was utilised from the screening phase (n = 709) of a placebo-controlled feasibility randomised control trial (RCT) of sertraline in HD patients with mild to moderate Major Depressive Disorder. Alternative factor models including bi-factor models for the BDI-II and PHQ-9 were evaluated. Coefficient omega and omega-hierarchical were calculated. Results: For both measures, bi-factor measurement models had the overall best fit to the data, with dominant general depression factors. Omega-hierarchical for the general BDI-II and PHQ-9 factors was 0.94 and 0.88 respectively. Both general factors had high reliability (coefficient omega = 0.97 and 0.94 respectively) and explained over 85% of the explained common variance within their respective models. BDI-II and PHQ-9 general depression factors were negatively associated with age and urine output and positively with a history of depression, antidepressant use within the last 3 months and a history of failed transplantation. In adjusted regression models, age, urine output and a history of depression remained significant. Conclusions: These data suggest that both the BDI-II and PHQ-9 are sufficiently unidimensional to warrant the use of a total score. Younger age, lower urine output and a history of depression appear consistent correlates of depression severity among HD patients.Peer reviewedFinal Accepted Versio

    Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences

    Get PDF
    We study the characteristics of molecular gas in the central regions of spiral galaxies on the basis of our CO(J=1-0) imaging survey of 20 nearby spiral galaxies using the NRO and OVRO millimeter arrays. Condensations of molecular gas at galactic centers with sizescales < 1 kpc and CO-derived masses M_gas(R<500pc) = 10^8 - 10^9 M_sun are found to be prevalent in the gas-rich L^* galaxies. Moreover, the degree of gas concentration to the central kpc is found to be higher in barred systems than in unbarred galaxies. This is the first statistical evidence for the higher central concentration of molecular gas in barred galaxies, and it strongly supports the theory of bar-driven gas transport. It is most likely that more than half of molecular gas within the central kpc of a barred galaxy was transported there from outside by the bar. The supply of gas has exceeded the consumption of gas by star formation in the central kpc, resulting in the excess gas in the centers of barred systems. The mean rate of gas inflow is statistically estimated to be larger than 0.1 - 1 M_sun/yr. The correlation between gas properties in the central kpc and the type of nuclear spectrum (HII, LINER, or Seyfert) is investigated. A correlation is found in which galaxies with larger gas-to-dynamical mass ratios tend to have HII nuclear spectra, while galaxies with smaller ratios show spectra indicating AGN. Also, the theoretical prediction of bar-dissolution by condensation of gas to galactic centers is observationally tested. It is suggested that the timescale for bar dissolution is larger than 10^8 - 10^10 yr, or a bar in a L^* galaxy is not destroyed by a condensation of 10^8 - 10^9 M_sun gas in the central kpc.Comment: AASTeX, 20 pages, 8 eps figs, ApJ in press (10 Nov. 1999 issue

    Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies

    Get PDF
    We present results from an imaging survey of an unbiased sample of thirty-eight early-type (S0--Sa), low-inclination, optically barred galaxies in the field. Our goal was to find and characterize central stellar and gaseous structures: secondary bars, inner disks, and nuclear rings. Bars inside bars are surprisingly common: at least one quarter of the sample galaxies (possibly as many as 40%) are double-barred, with no preference for Hubble type or the strength of the primary bar. A typical secondary bar is ~12% of the size of its primary bar and 240--750 pc in radius. We see no significant effect of secondary bars on nuclear activity. We also find kiloparsec-scale inner disks in at least 20% of our sample, almost exclusively in S0 galaxies. These disks are on average 20% the size of their host bar, and show a wider range of relative sizes than do secondary bars. Nuclear rings are present in about a third of our sample. Most are dusty, sites of current or recent star formation, or both; such rings are preferentially found in Sa galaxies. Three S0 galaxies (15% of the S0's) appear to have purely stellar nuclear rings, with no evidence for dust or recent star formation. The fact that these central stellar structures are so common indicates that the inner regions of early-type barred galaxies typically contain dynamically cool and disklike structures. This is especially true for S0 galaxies, where secondary bars, inner disks, and/or stellar nuclear rings are present at least two thirds of the time. (abridged)Comment: LaTeX, 15 pages, 7 EPS figures; to appear in The Astronomical Journal (July 2002

    The Influence of Bars on Nuclear Activity

    Full text link
    We test ideas on fueling of galactic nuclei by bar-driven inflow by comparing the detection rate and intensity of nuclear H II regions and AGNs among barred and unbarred galaxies in a sample of over 300 spirals selected from our recent optical spectroscopic survey of nearby galaxies. Among late-type spirals (Sc-Sm), but not early-type (S0/a-Sbc), we observe in the barred group a very marginal increase in the detection rate of H II nuclei and a corresponding decrease in the incidence of AGNs. The minor differences in the detection rates, however, are statistically insignificant, most likely stemming from selection effects and not from a genuine influence from the bar. The presence of a bar seems to have no noticeable impact on the likelihood of a galaxy to host either nuclear star formation or an AGN. The nuclei of early-type barred spirals do exhibit measurably higher star-formation rates than their unbarred counterparts, as indicated by either the luminosity or the equivalent width of H-alpha emission. By contrast, late-type spirals do not show such an effect. Bars have a negligible effect on the strength of the AGNs in our sample, regardless of the Hubble type of the host galaxy. This result confirms similar conclusions reached by other studies based on much smaller samples.Comment: To appear in the Astrophysical Journal. LaTex, 31 pages including 6 postscript figures and 3 tables. AAStex macros include

    The Mass Inflow Rate in the Barred Galaxy NGC 1530

    Get PDF
    Mass inflow in barred galaxies has been invoked to account for a wide variety of phenomena, but until now direct evidence for inflow has been lacking. We present Fabry-Perot H-alpha observations of the barred spiral galaxy NGC 1530 from which we determine velocities of the ionized gas for the entire region swept by the bar. We compare the velocity field to models of gas flow in barred spirals and show that it is well reproduced by ideal gas hydrodynamic models. Inspection of the models and observations reveals that gas entering the bar dust lanes streams directly down the dust lanes toward the 2 kpc radius nuclear ring. The models predict that approximately 20% of the gas flowing down the dust lane enters the nuclear ring; the remaining gas sprays around the ring to the other bar dust lane. The fraction of the gas entering the ring is relatively insensitive to the shape or size of the bar. Our observations of the velocity field and dust optical depth yield a mass inflow rate into the nuclear ring of 1 solar mass per year.Comment: 13 pages, 3 figures, aastex 4.0, accepted for publication in Ap J Letter

    Galactic bulge formation as a maximum intensity starburst

    Get PDF
    Properties of normal galactic star formation, including the density dependence, threshold density, turbulent scaling relations, and clustering properties, are applied to the formation of galactic bulges. One important difference is that the bulge potential well is too deep to have allowed self-regulation or blow-out by the pressures from young stars, unlike galactic disks or dwarf galaxies. As a result, bulge formation should have been at the maximum rate, which is such that most of the gas would get converted into stars in only a few dynamical time scales, or ~10^8 years. The gas accretion phase can be longer than this, but once the critical density is reached, which depends primarily on the total virial density from dark matter, the formation of stars in the bulge should have been extremely rapid. Such three-dimensional star formation should also have formed many clusters, like normal disk star formation today. Some of these clusters may have survived as old globulars, but most got dispersed, although they might still be observable as concentrated streams in phase space.Comment: 10 pages, 1 figure, scheduled for ApJ, vol. 517, May 20, 199
    corecore