49 research outputs found

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    AU-Rich Element-Mediated mRNA Decay Can Occur Independently of the miRNA Machinery in Mouse Embryonic Fibroblasts and Drosophila S2-Cells

    Get PDF
    AU-rich elements (AREs) are regulatory sequences located in the 3′ untranslated region of many short-lived mRNAs. AREs are recognized by ARE-binding proteins and cause rapid mRNA degradation. Recent reports claimed that the function of AREs may be – at least in part – relayed through the miRNA pathway. We have revisited this hypothesis using dicer knock-out mouse embryonic fibroblasts and cultured Drosophila cells. In contrast to the published results, we find no evidence for a general requirement of the miRNA pathway in the function of AREs. Endogenous ier3 mRNA, which is known to contain a functional ARE, was degraded rapidly at indistinguishable rates in wild type and dicer knock-out mouse embryonic fibroblasts. In cultured Drosophila cells, both ARE-containing GFP reporter mRNAs and the endogenous cecA1 mRNA were resistant to depletion of the mi/siRNA factors dcr-1, dcr-2, ago1 and ago2. Furthermore, the Drosophila miRNA originally proposed to recognize AU-rich elements, miR-289, is not detectably expressed in flies or cultured S2 cells. Even our attempts to overexpress this miRNA from its genomic hairpin sequence failed. Thus, this sequence cannot serve as link between the miRNA and the AU-rich element mediated silencing pathways. Taken together, our studies in mammalian and Drosophila cells strongly argue that AREs can function independently of miRNAs

    Molecular mechanisms of telomere elongation by budding yeast telomerase.

    No full text

    Telomerase-dependent repeat divergence at the 3' ends of yeast telomeres

    No full text
    Yeast telomeres consist of approximately 300 nt of degenerate repeats with the consensus sequence G(2-3)(TG)(1-6). We developed a method for the amplification of a genetically marked telomere by PCR, allowing precise length and sequence determination of the G-rich strand including the 3' terminus. We examined wild-type cells, telomerase RNA deficient cells and a strain deleted for YKU70, which encodes for a protein involved in telomere maintenance and DNA double strand break repair. The 3' end of the G-rich strand was found to be at a variable position within the telomeric repeat. No preference for either thymine or guanine as the 3' base was detected. Comparison of telomere sequences from clonal populations revealed that telomeres consist of a centromere-proximal region of stable sequence and a distal region with differing degenerate repeats. In wild-type as well as yku70-Delta cells, variation in the degenerate telomeric repeats was detected starting 40-100 nt from the 3' end. Sequence divergence was abolished after deletion of the telomerase RNA gene. Thus, this region defines the domain where telomere shortening and telomerase-mediated extension occurs. Since this domain is much larger than the number of nucleo-tides lost per generation in the absence of telomerase, we propose that telomerase does not extend a given telomere in every cell cycle

    Telomerase: biochemical considerations for enzyme and substrate.

    No full text
    Telomerase extends chromosome ends by iterative reverse transcription of its RNA template. Following the addition of each telomeric repeat, the RNA template and the telomeric substrate reset their relative position in the active site provided by the telomerase reverse transcriptase (TERT). This step might require the formation of guanine-rich secondary structures in the nascent product. Results from numerous studies begin to delineate TERT sub-domains that orchestrate these events and support the model of cooperative action between distinct active sites within telomerase multimers. Natural telomere substrates are protein-DNA complexes that show an asymmetry between the two ends of a chromosome, possibly reflecting their differential mode of replication

    Telomerase: biochemical considerations for enzyme and substrate

    No full text
    Telomerase extends chromosome ends by iterative reverse transcription of its RNA template. Following the addition of each telomeric repeat, the RNA template and the telomeric substrate reset their relative position in the active site provided by the telomerase reverse transcriptase (TERT). This step might require the formation of guanine-rich secondary structures in the nascent product. Results from numerous studies begin to delineate TERT sub-domains that orchestrate these events and support the model of cooperative action between distinct active sites within telomerase multimers. Natural telomere substrates are protein-DNA complexes that show an asymmetry between the two ends of a chromosome, possibly reflecting their differential mode of replication

    Molecular basis for asymmetry sensing of siRNAs by the <em>Drosophila </em>Loqs-PD/Dcr-2 complex in RNA interference.

    No full text
    RNA interference defends against RNA viruses and retro-elements within an organism&#39;s genome. It is triggered by duplex siRNAs, of which one strand is selected to confer sequence-specificity to the RNA induced silencing complex (RISC). In Drosophila, Dicer-2 (Dcr-2) and the double-stranded RNA binding domain (dsRBD) protein R2D2 form the RISC loading complex (RLC) and select one strand of exogenous siRNAs according to the relative thermodynamic stability of base-pairing at either end. Through genome editing we demonstrate that Loqs-PD, the Drosophila homolog of human TAR RNA binding protein (TRBP) and a paralog of R2D2, forms an alternative RLC with Dcr-2 that is required for strand choice of endogenous siRNAs in S2 cells. Two canonical dsRBDs in Loqs-PD bind to siRNAs with enhanced affinity compared to miRNA/miRNA* duplexes. Structural analysis, NMR and biophysical experiments indicate that the Loqs-PD dsRBDs can slide along the RNA duplex to the ends of the siRNA. A moderate but notable binding preference for the thermodynamically more stable siRNA end by Loqs-PD alone is greatly amplified in complex with Dcr-2 to initiate strand discrimination by asymmetry sensing in the RLC
    corecore