138 research outputs found

    Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma.

    Get PDF
    AIMS To save time and have more consistent contours, fully automatic segmentation of targets and organs at risk (OAR) is a valuable asset in radiotherapy. Though current deep learning (DL) based models are on par with manual contouring, they are not perfect and typical errors, as false positives, occur frequently and unpredictably. While it is possible to solve this for OARs, it is far from straightforward for target structures. In order to tackle this problem, in this study, we analyzed the occurrence and the possible dose effects of automated delineation outliers. METHODS First, a set of controlled experiments on synthetically generated outliers on the CT of a glioblastoma (GBM) patient was performed. We analyzed the dosimetric impact on outliers with different location, shape, absolute size and relative size to the main target, resulting in 61 simulated scenarios. Second, multiple segmentation models where trained on a U-Net network based on 80 training sets consisting of GBM cases with annotated gross tumor volume (GTV) and edema structures. On 20 test cases, 5 different trained models and a majority voting method were used to predict the GTV and edema. The amount of outliers on the predictions were determined, as well as their size and distance from the actual target. RESULTS We found that plans containing outliers result in an increased dose to healthy brain tissue. The extent of the dose effect is dependent on the relative size, location and the distance to the main targets and involved OARs. Generally, the larger the absolute outlier volume and the distance to the target the higher the potential dose effect. For 120 predicted GTV and edema structures, we found 1887 outliers. After construction of the planning treatment volume (PTV), 137 outliers remained with a mean distance to the target of 38.5 ± 5.0 mm and a mean size of 1010.8 ± 95.6 mm3. We also found that majority voting of DL results is capable to reduce outliers. CONCLUSIONS This study shows that there is a severe risk of false positive outliers in current DL predictions of target structures. Additionally, these errors will have an evident detrimental impact on the dose and therefore could affect treatment outcome

    Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination

    Get PDF
    Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki=0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI

    Actinomycosis of the parotid masquerading as malignant neoplasm.

    Get PDF
    BACKGROUND: Primary actinomycosis of the parotid gland is of rare occurrence and can mimic a malignant neoplasm both clinically as well as radiologically. CASE PRESENTATION: We present here a case of primary actinomycosis of the parotid gland presenting with a parotid mass lesion with erosion of skull bones. CONCLUSIONS: Clinical presentation of cervico-facial actinomycosis is characterized by the presence of a suppurative or indurative mass with discharging sinuses. The lesion demonstrates characteristic features on fine needle aspiration cytology and histology, however at times the findings are equivocal

    The M235T Polymorphism in the AGT Gene and CHD Risk: Evidence of a Hardy-Weinberg Equilibrium Violation and Publication Bias in a Meta-Analysis

    Get PDF
    BACKGROUND: The M235T polymorphism in the AGT gene has been related to an increased risk of hypertension. This finding may also suggest an increased risk of coronary heart disease (CHD). METHODOLOGY/PRINCIPAL FINDINGS: A case-cohort study was conducted in 1,732 unrelated middle-age women (210 CHD cases and 1,522 controls) from a prospective cohort of 15,236 initially healthy Dutch women. We applied a Cox proportional hazards model to study the association of the polymorphism with acute myocardial infarction (AMI) (n = 71) and CHD. In the case-cohort study, no increased risk for CHD was found under the additive genetic model (hazard ratio [HR] = 1.20; 95% confidence interval [CI], 0.86 to 1.68; P = 0.28). This result was not changed by adjustment (HR = 1.17; 95% CI, 0.83 to 1.64; P = 0.38) nor by using dominant, recessive and pairwise genetic models. Analyses for AMI risk under the additive genetic model also did not show any statistically significant association (crude HR = 1.14; 95% CI, 0.93 to 1.39; P = 0.20). To evaluate the association, a comprehensive systematic review and meta-analysis were undertaken of all studies published up to February 2007 (searched through PubMed/MEDLINE, Web of Science and EMBASE). The meta-analysis (38 studies with 13284 cases and 18722 controls) showed a per-allele odds ratio (OR) of 1.08 (95% CI, 1.01 to 1.15; P = 0.02). Moderate to large levels of heterogeneity were identified between studies. Hardy-Weinberg equilibrium (HWE) violation and the mean age of cases were statistically significant sources of the observed variation. In a stratum of non-HWE violation studies, there was no effect. An asymmetric funnel plot, the Egger's test (P = 0.066), and the Begg-Mazumdar test (P = 0.074) were all suggestive of the presence of publication bias. CONCLUSIONS/SIGNIFICANCE: The pooled OR of the present meta-analysis, including our own data, presented evidence that there is an increase in the risk of CHD conferred by the M235T variant of the AGT gene. However, the relevance of this weakly positive overall association remains uncertain because it may be due to various residual biases, including HWE-violation and publication biases
    corecore