107 research outputs found

    Beyond thresholding: analysis and improvements for deterministic parameter estimation

    Full text link
    Hard-threshold estimators are popular in signal processing applications. We provide a detailed study of using hard-threshold estimators for estimating an unknown deterministic signal when additive white Gaussian noise corrupts observations. The analysis, depending heavily on Cramér-Rao bounds, motivates piecewise-linear estimation as a simple improvement to hard thresholding. We compare the performance of two piecewise-linear estimators to a hard-threshold estimator. When either piecewise-linear estimator is optimized for the decay rate of the basis coefficients, its performance is better than the best possible with hard thresholding.First author draf

    Quantum-inspired interferometry with chirped laser pulses

    Full text link
    We introduce and implement an interferometric technique based on chirped femtosecond laser pulses and nonlinear optics. The interference manifests as a high-visibility (> 85%) phase-insensitive dip in the intensity of an optical beam when the two interferometer arms are equal to within the coherence length of the light. This signature is unique in classical interferometry, but is a direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits all the metrological advantages of the quantum interferometer, but with signals at least 10^7 times greater. In particular we demonstrate enhanced resolution, robustness against loss, and automatic dispersion cancellation. Our interferometer offers significant advantages over previous technologies, both quantum and classical, in precision time delay measurements and biomedical imaging.Comment: 6 pages, 4 figure

    Three lateral osteotomy designs for bilateral sagittal split osteotomy: biomechanical evaluation with three-dimensional finite element analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of the lateral osteotomy cut during bilateral sagittal split osteotomy (BSSO) varies according to the surgeon's preference, and no consensus has been reached regarding the ideal location from the perspective of biomechanics. The purpose of this study was to evaluate the mechanical behavior of the mandible and screw-miniplate system among three lateral osteotomy designs for BSSO by using three-dimensional (3-D) finite element analysis (FEA).</p> <p>Methods</p> <p>The Trauner-Obwegeser (TO), Obwegeser (Ob), and Obwegeser-Dal Pont (OD) methods were used for BSSO. In all the FEA simulations, the distal segments were advanced by 5 mm. Each model was fixed by using miniplates. These were applied at four different locations, including along Champy's lines, to give 12 different FEA miniplate fixation methods. We examined these models under two different loads.</p> <p>Results</p> <p>The magnitudes of tooth displacement, the maximum bone stress in the vicinity of the screws, and the maximum stress on the screw-miniplate system were less in the OD method than in the Ob and TO methods at all the miniplate locations. In addition, Champy's lines models were less than those at the other miniplate locations.</p> <p>Conclusions</p> <p>The OD method allows greater mechanical stability of the mandible than the other two techniques. Further, miniplates placed along Champy's lines provide greater mechanical advantage than those placed at other locations.</p

    All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations

    Get PDF
    In ultra-high resolution (UHR-) optical coherence tomography (OCT) group velocity dispersion (GVD) must be corrected for in order to approach the theoretical resolution limit. One approach promises not only compensation, but complete annihilation of even order dispersion effects, and that at all sample depths. This approach has hitherto been demonstrated with an experimentally demanding ‘balanced detection’ configuration based on using two detectors. We demonstrate intensity correlation (IC) OCT using a conventional spectral domain (SD) UHR-OCT system with a single detector. IC-SD-OCT configurations exhibit cross term ghost images and a reduced axial range, half of that of conventional SD-OCT. We demonstrate that both shortcomings can be removed by applying a generic artefact reduction algorithm and using analytic interferograms. We show the superiority of IC-SD-OCT compared to conventional SD-OCT by showing how IC-SD-OCT is able to image spatial structures behind a strongly dispersive silicon wafer. Finally, we question the resolution enhancement of 2–? that IC-SD-OCT is often believed to have compared to SD-OCT. We show that this is simply the effect of squaring the reflectivity profile as a natural result of processing the product of two intensity spectra instead of a single spectrum
    corecore