4 research outputs found

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. Β© 2013 Kaabinejadian et al

    Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    Get PDF
    The designation of Burkholderia pseudomallei as a category B select agent has resulted in considerable research funding to develop a protective vaccine. This bacterium also causes a naturally occurring disease (melioidosis), an important cause of death in many countries including Thailand and Australia. In this study, we explored whether a vaccine could be used to provide protection from melioidosis. An economic evaluation based on its use in Thailand indicated that a vaccine could be a cost-effective intervention if used in high-risk populations such as diabetics and those with chronic kidney or lung disease. A literature search of vaccine studies in animal models identified the current candidates, but noted that models failed to take account of the common routes of infection in natural melioidosis and major risk factors for infection, primarily diabetes. This review highlights important areas for future research if biodefence-driven vaccines are to play a role in reducing the global incidence of melioidosis

    Subversion of Host Recognition and Defense Systems by Francisella spp

    No full text
    corecore