239 research outputs found

    The outlook for precipitation measurements from space

    Get PDF
    To provide useful precipitation measurements from space, two requirements must be met: adequate spatial and temporal sampling of the storm and sufficient accuracy in the estimate of precipitation intensity. Although presently no single instrument or method completely satisfies both requirements, the visible/IR, microwave radiometer and radar methods can be used in a complementary manner. Visible/IR instruments provide good temporal sampling and rain area depiction, but recourse must be made to microwave measurements for quantitative rainfall estimates. The inadequacy of microwave radiometer measurements over land suggests, in turn, the use of radar. Several recently developed attenuating-wavelength radar methods are discussed in terms of their accuracy, dynamic range and system implementation. Traditionally, the requirements of high resolution and adequate dynamic range led to fairly costly and complex radar systems. Some simplications and cost reduction can be made; however, by using K-band wavelengths which have the advantages of greater sensitivity at the low rain rates and higher resolution capabilities. Several recently proposed methods of this kind are reviewed in terms of accuracy and system implementation. Finally, an adaptive-pointing multi-sensor instrument is described that would exploit certain advantages of the IR, radiometric and radar methods

    Π£Π»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ риска для ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ³ΠΎΡ€Ρ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² Π¨Π²Π΅Ρ†ΠΈΠΈ

    Get PDF
    In radiological diagnostics and therapy, it is important that practitioners, referrers, (i.e. radiologists, radiation oncologists and others in health-care) are aware of how much radiation a patient may receive from the various procedures used and associated health risk. The profession has a duty to inform patients or their representatives of the advantages and disadvantages of specific investigations or treatment plans. The need to estimate and communicate risks in connection with medical use of ionizing radiation is highlighted e.g. in the Russian Federation State Law No 3, Β§17.2,1996 and in the EU directive (2013/59/EURATOM 2014). The most commonly used way to express harm in relation to low doses of ionizing radiation is use of the quantity effective dose (E). Effective dose, a radiation protection quantity, however is not intended to provide risk estimates for medical exposures. Its purpose is to optimize conditions for radiation workers (18-65 years) or the general public; all groups with age distributions that differ from patients. In this paper the lifetime attributable risk was used to estimate the excess risk of receiving and dying of radiogenic cancer. The lifetime attributable risk estimations are generated from three different variables, gender, attained age and age at exposure giving the possibility to create age and gender specific cancer risk estimations. Initially, the US Environmental Protection Agency lifetime attributable risk coefficients which are intended to predict the cancer risk from ionizing radiation to a normal US population were applied. In this work, the lifetime attributable risk predictions were modified to the normal Swedish population and to cohorts of Swedish patients undergoing radiological and nuclear medicine examinations or treatments with survival times that differfrom the normal population. For Swedish males, all organs were given the same absorbed dose, exposed at 20, 40 and 70 years, the lifetime attributable risk coefficients (Gy-1) were 0.11, 0.068, and 0.038, respectively, which is lower than the corresponding figures for US males, 0.13, 0.077, and 0.040. For Swedish females, all organs were given the same absorbed dose, exposed at 40 years of age with a diagnosis of breast, colon or liver cancer, the lifetime attributable risk coefficients are 0.064, 0.034, and 0.0038, respectively, which is much lower than if a 40 years female without known cancer is exposed, 0.073.Π’ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностикС ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΊΡ€Π°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ мСдицинский пСрсонал (Π²Ρ€Π°Ρ‡ΠΈ-Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ»ΠΎΠ³ΠΈ, Π»Π΅Ρ‡Π°Ρ‰ΠΈΠ΅ Π²Ρ€Π°Ρ‡ΠΈ, Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈ ΠΈ ΠΏΡ€.) ΠΈΠΌΠ΅Π»ΠΈ прСдставлСниС ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΡƒΡŽ Π΄ΠΎΠ·Ρƒ облучСния ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рСнтгСнорадиологичСских исслСдований ΠΈ с ΠΊΠ°ΠΊΠΈΠΌ риском для Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ эта Π΄ΠΎΠ·Π° связана. ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΈΠΉ пСрсонал нСсСт ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π·Π° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΈΡ… Π·Π°ΠΊΠΎΠ½Π½Ρ‹Ρ… прСдставитСлСй ΠΎ достоинствах ΠΈ нСдостатках Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… исслСдований ΠΈΠ»ΠΈ ΠΏΠ»Π°Π½ΠΎΠ² лСчСния. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ рисков Π² контСкстС использования ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ особо ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Π² Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½Π΅ Π€Π—-3 «О Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности насСлСния» Π² Россйской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π² Π΄ΠΈΡ€Π΅ΠΊΡ‚ΠΈΠ²Π΅ Π•Π²Ρ€ΠΎΡΠΎΡŽΠ·Π° 2013/59/EURATOM 2014. НаиболСС распространСнным способом выраТСния Π²Ρ€Π΅Π΄Π° ΠΎΡ‚ Π½ΠΈΠ·ΠΊΠΈΡ… Π΄ΠΎΠ· ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния являСтся использованиС эффСктивной Π΄ΠΎΠ·Ρ‹, которая, хотя ΠΈ являСтся основной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π² Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Π΅, Π½Π΅ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для ΠΎΡ†Π΅Π½ΠΊΠΈ рисков ΠΎΡ‚ мСдицинского облучСния. Π•Π΅ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся обСспСчСниС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ пСрсонала (людСй Π² возрастС 18β€”65Π»Π΅Ρ‚) ΠΈ насСлСния β€” Π³Ρ€ΡƒΠΏΠΏ с возрастным распрСдСлСниСм, Ρ€Π΅Π·ΠΊΠΎ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΌΡΡ ΠΎΡ‚ возрастных распрСдСлСний ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π’ Π΄Π°Π½Π½ΠΎΠΌ исслСдовании Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска Π±Ρ‹Π»Π° использована для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ риска ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈ ΡƒΠΌΠ΅Ρ€Π΅Ρ‚ΡŒ ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π½ΠΎΠ·ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠžΡ†Π΅Π½ΠΊΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°Π»ΠΈΡΡŒ Π½Π° Ρ‚Ρ€Π΅Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…: ΠΏΠΎΠ», возраст доТития ΠΈ возраст ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ риски развития Ρ€Π°Π΄ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π° ΠΈ возраста ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ коэффициСнты ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ АгСнтством ΠΏΠΎ Π·Π°Ρ‰ΠΈΡ‚Π΅ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды БША, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ€Π°Π΄ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Ρ€Π°ΠΊΠΈ для Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ популяции БША. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ значСния коэффициСнтов ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска Π±Ρ‹Π»ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Ρ‹ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ спСцифики Π·Π΄ΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ швСдского насСлСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ³ΠΎΡ€Ρ‚ ΡˆΠ²Π΅Π΄ΡΠΊΠΈΡ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², проходящих Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ рСнтгСнорадиологичСскиС исслСдования ΠΈ курсы Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, врСмя доТития ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сущСствСнно ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ для ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ насСлСния. Для ΡˆΠ²Π΅Π΄ΡΠΊΠΈΡ… ΠΌΡƒΠΆΡ‡ΠΈΠ½, ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ всС ΠΎΡ€Π³Π°Π½Ρ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½Π½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ Π² возрастС 20, 40 ΠΈ 70 Π»Π΅Ρ‚, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ коэффициСнты ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска (Π“Ρ€-1) составили 0,11, 0,068, ΠΈ 0,038 соотвСтствСнно, Ρ‡Ρ‚ΠΎ Π½ΠΈΠΆΠ΅ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для амСриканских ΠΌΡƒΠΆΡ‡ΠΈΠ½ β€” 0,13, 0,077, ΠΈ 0,040 соотвСтствСнно. Для ΡˆΠ²Π΅Π΄ΡΠΊΠΈΡ… ΠΆΠ΅Π½Ρ‰ΠΈΠ½, ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ всС ΠΎΡ€Π³Π°Π½Ρ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΎΠ΄Π½Ρƒ ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½Π½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ Π² возрастС 40 Π»Π΅Ρ‚ с Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Ρ€Π°ΠΊΠ° Π³Ρ€ΡƒΠ΄ΠΈ, прямой кишки ΠΈΠ»ΠΈ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, коэффициСнты ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ риска (Π“Ρ€-1) составили 0,064, 0,034, ΠΈ 0,0038 соотвСтствСнно, Ρ‡Ρ‚ΠΎ сущСствСнно Π½ΠΈΠΆΠ΅ значСния 0,073 Π² случаС облучСния 40-Π»Π΅Ρ‚Π½ΠΈΡ… ΠΆΠ΅Π½Ρ‰ΠΈΠ½, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΈΠ°Π³Π½ΠΎΠ· Ρ€Π°ΠΊΠ° установлСн Π½Π΅ Π±Ρ‹Π»

    The Procedure for Determining and Quality Assurance Program for the Calculation of Dose Coefficients Using DCAL Software

    Full text link
    The development of a spallation neutron source with a mercury target may lead to the production of rare radionuclides. The dose coefficients for many of these radionuclides have not yet been published. A collaboration of universities and national labs has taken on the task of calculating dose coefficients for the rare radionuclides using the software package: DCAL. The working group developed a procedure for calculating dose coefficients and a quality assurance (QA) program to verify the calculations completed. The first portion of this QA program was to verify that each participating group could independently reproduce the dose coefficients for a known set of radionuclides. The second effort was to divide the group of radionuclides among the independent participants in a manner that assured that each radionuclide would be redundantly and independently calculated. The final aspect of this program was to resolve any discrepancies arising among the participants as a group of the whole. The output of the various software programs for six QA radionuclides, 144Nd, 201Au, 50V, 61Co, 41Ar, and 38S were compared among all members of the working group. Initially, a few differences in outputs were identified. This exercise identified weaknesses in the procedure, which have since been revised. After the revisions, dose coefficients were calculated and compared to published dose coefficients with good agreement. The present efforts involve generating dose coefficients for the rare radionuclides anticipated to be produced from the spallation neutron source should a mercury target be employed

    An Interdatabase Comparison of Nuclear Decay and Structure Data Utilized in the Calculation of Dose Coefficients for Radionuclides Produced in a Spallation Neutron Source

    Full text link
    Internal and external dose coefficient values have been calculated for 14 anthropogenic radionuclides which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 ΞΌm and 5 ΞΌm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 ΞΌm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. Information obtained from this study will be used to support the siting and permitting of future accelerator-driven nuclear initiatives within the U.S. Department of Energy complex, including the Spallation Neutron Source (SNS) and Accelerator Production of Tritium (APT) Projects
    • …
    corecore