8 research outputs found

    A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia.

    Get PDF
    Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate

    Biotransformation of 2-Benzoxazolinone and 2-Hydroxy-1,4-Benzoxazin-3-one by Endophytic Fungi Isolated from Aphelandra tetragona

    No full text
    The biotransformation of the phytoanticipins 2-benzoxazolinone (BOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) by four endophytic fungi isolated from Aphelandra tetragona was studied. Using high-performance liquid chromatography-mass spectrometry, several new products of acylation, oxidation, reduction, hydrolysis, and nitration were identified. Fusarium sambucinum detoxified BOA and HBOA to N-(2-hydroxyphenyl)malonamic acid. Plectosporium tabacinum, Gliocladium cibotii, and Chaetosphaeria sp. transformed HBOA to 2-hydroxy-N-(2-hydroxyphenyl)acetamide, N-(2-hydroxyphenyl)acetamide, N-(2-hydroxy-5-nitrophenyl)acetamide, N-(2-hydroxy-3-nitrophenyl)acetamide, 2-amino-3H-phenoxazin-3-one, 2-acetylamino-3H-phenoxazin-3-one, and 2-(N-hydroxy)acetylamino-3H-phenoxazin-3-one. BOA was not degraded by these three fungal isolates. Using 2-hydroxy-N-(2-hydroxyphenyl)[(13)C(2)]acetamide, it was shown that the metabolic pathway for HBOA and BOA degradation leads to o-aminophenol as a key intermediate

    Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules

    Full text link
    BACKGROUND Myocardial infarction and stroke are the life-threatening consequences after plaque rupture in coronary or carotid arteries. Positron emission tomography employing [(18)F]fluorodeoxyglucose can visualize plaque inflammation; however, the question remains whether this is specific for plaque vulnerability. The pathophysiology of vulnerable plaques suggests several molecular processes. Here, we propose the co-stimulatory molecules CD80 and CD86 as potential new targets for non-invasive imaging. METHODS AND RESULTS Human atherosclerotic segments were obtained from carotid endarterectomy and classified into stable and vulnerable plaques. We identified CD80 and CD86 with significantly higher mRNA levels in vulnerable than stable plaques. CD80+ and CD86+ cells were found in spatial proximity to CD83+ dendritic cells and CD68+ macrophages of atherosclerotic plaques. As a proof of target-expression we labeled a low molecular weight ligand, which has a high affinity for human CD80, with carbon-11 to perform in vitro autoradiography with human plaque slices. We observed 3-fold higher binding to vulnerable than stable plaques, demonstrating a first approach towards discriminating between the two plaque types. Positron emission tomography studies showed accumulation in CD80+ Raji xenografts, low radioactivity in myocardium and rapid clearance from the blood pool in mice. CONCLUSION In human carotid arteries, the co-stimulatory molecules CD80 and CD86 show significantly higher expression levels in vulnerable compared to stable plaques. With the novel CD80-specific radiotracer we are able to discriminate between stable and vulnerable atherosclerotic plaques in vitro. This is an important step towards non-invasive imaging of the life-threatening vulnerable lesions in humans

    Treasure from garden: chemical profiling, pharmacology and biotechnology of mulleins

    No full text

    Planar Chromatography

    No full text
    corecore