624 research outputs found

    Lattice ϕ4\phi^4 theory of finite-size effects above the upper critical dimension

    Full text link
    We present a perturbative calculation of finite-size effects near TcT_c of the ϕ4\phi^4 lattice model in a dd-dimensional cubic geometry of size LL with periodic boundary conditions for d>4d > 4. The structural differences between the ϕ4\phi^4 lattice theory and the ϕ4\phi^4 field theory found previously in the spherical limit are shown to exist also for a finite number of components of the order parameter. The two-variable finite-size scaling functions of the field theory are nonuniversal whereas those of the lattice theory are independent of the nonuniversal model parameters.One-loop results for finite-size scaling functions are derived. Their structure disagrees with the single-variable scaling form of the lowest-mode approximation for any finite ξ/L\xi/L where ξ\xi is the bulk correlation length. At TcT_c, the large-LL behavior becomes lowest-mode like for the lattice model but not for the field-theoretic model. Characteristic temperatures close to TcT_c of the lattice model, such as Tmax(L)T_{max}(L) of the maximum of the susceptibility χ\chi, are found to scale asymptotically as TcTmax(L)Ld/2T_c - T_{max}(L) \sim L^{-d/2}, in agreement with previous Monte Carlo (MC) data for the five-dimensional Ising model. We also predict χmaxLd/2\chi_{max} \sim L^{d/2} asymptotically. On a quantitative level, the asymptotic amplitudes of this large -LL behavior close to TcT_c have not been observed in previous MC simulations at d=5d = 5 because of nonnegligible finite-size terms L(4d)/2\sim L^{(4-d)/2} caused by the inhomogeneous modes. These terms identify the possible origin of a significant discrepancy between the lowest-mode approximation and previous MC data. MC data of larger systems would be desirable for testing the magnitude of the L(4d)/2L^{(4-d)/2} and L4dL^{4-d} terms predicted by our theory.Comment: Accepted in Int. J. Mod. Phys.

    Global Persistence Exponent in Critical Dynamics: Finite Size induced Crossover

    Get PDF
    We extend the definition of a global order parameter to the case of a critical system confined between two infinite parallel plates separated by a finite distance LL. For a quench to the critical point we study the persistence property of the global order parameter and show that there is a crossover behaviour characterized by a non universal exponent which depends on the ratio of the system size to a dynamic length scale

    Critical free energy and Casimir forces in rectangular geometries

    Full text link
    We study the critical behavior of the free energy and the thermodynamic Casimir force in a Ld1×LL_\parallel^{d-1} \times L block geometry in 2<d<42<d<4 dimensions with aspect ratio ρ=L/L\rho=L/L_\parallel above, at, and below TcT_c on the basis of the O(n)(n) symmetric ϕ4\phi^4 lattice model with periodic boundary conditions (b.c.). We consider a simple-cubic lattice with isotropic short-range interactions. Exact results are derived in the large - nn limit describing the geometric crossover from film (ρ=0\rho =0) over cubic ρ=1\rho=1 to cylindrical (ρ=\rho = \infty) geometries. For n=1n=1, three perturbation approaches are presented that cover both the central finite-size regime near TcT_c for 1/4ρ31/4 \lesssim \rho \lesssim 3 and the region outside the central finite-size regime well above and below TcT_c for arbitrary ρ\rho. At bulk TcT_c of isotropic systems with periodic b.c., we predict the critical Casimir force in the vertical (L)(L) direction to be negative (attractive) for a slab (ρ1\rho 1), and zero for a cube (ρ=1)(\rho=1). We also present extrapolations to the cylinder limit (ρ=\rho=\infty) and to the film limit (ρ=0\rho=0) for n=1n=1 and d=3d=3. Our analytic results for finite-size scaling functions in the minimal renormalization scheme at fixed dimension d=3d=3 agree well with Monte Carlo data for the three-dimensional Ising model by Hasenbusch for ρ=1\rho=1 and by Vasilyev et al. for ρ=1/6\rho=1/6 above, at, and below TcT_c.Comment: 23 pages, 14 figure

    Critical Behavior of O(n)-symmetric Systems With Reversible Mode-coupling Terms: Stability Against Detailed-balance Violation

    Full text link
    We investigate nonequilibrium critical properties of O(n)O(n)-symmetric models with reversible mode-coupling terms. Specifically, a variant of the model of Sasv\'ari, Schwabl, and Sz\'epfalusy is studied, where violation of detailed balance is incorporated by allowing the order parameter and the dynamically coupled conserved quantities to be governed by heat baths of different temperatures TST_S and TMT_M, respectively. Dynamic perturbation theory and the field-theoretic renormalization group are applied to one-loop order, and yield two new fixed points in addition to the equilibrium ones. The first one corresponds to Θ=TS/TM=\Theta = T_S / T_M = \infty and leads to model A critical behavior for the order parameter and to anomalous noise correlations for the generalized angular momenta; the second one is at Θ=0\Theta = 0 and is characterized by mean-field behavior of the conserved quantities, by a dynamic exponent z=d/2z = d / 2 equal to that of the equilibrium SSS model, and by modified static critical exponents. However, both these new fixed points are unstable, and upon approaching the critical point detailed balance is restored, and the equilibrium static and dynamic critical properties are recovered.Comment: 18 pages, RevTeX, 1 figure included as eps-file; submitted to Phys. Rev.

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with LHL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Five-loop additive renormalization in the phi^4 theory and amplitude functions of the minimally renormalized specific heat in three dimensions

    Full text link
    We present an analytic five-loop calculation for the additive renormalization constant A(u,epsilon) and the associated renormalization-group function B(u) of the specific heat of the O(n) symmetric phi^4 theory within the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude functions of the specific heat in three dimensions for n=1,2,3 above T_c and for n=1 below T_c up to five-loop order. Accurate results are obtained from Borel resummations of B(u) for n=1,2,3 and of the amplitude functions for n=1. Previous conjectures regarding the smallness of the resummed higher-order contributions are confirmed. Borel resummed universal amplitude ratios A^+/A^- and a_c^+/a_c^- are calculated for n=1.Comment: 30 pages REVTeX, 3 PostScript figures, submitted to Phys. Rev.

    New Geologic Map of the Argyre Region of Mars

    Get PDF
    The new generation of Mars orbital topographic and imaging data justifies a new mapping effort of the Argyre impact basin and surroundings (-30.0deg to -65.0deg lat., -20.0deg to -70.0deg long; Fig.1). Our primary objective is to produce a geologic map of the Argyre region at 1:5,000,000 scale in both digital and print formats. The map will detail the stratigraphic and crosscutting relations among rock materials and landforms. These include Argyre basin infill, impact crater rim materials and adjoining highland materials of Noachis Terra, valleys and elongated basins that are radial and concentric about the primary Argyre basin, faults, enigmatic ridges, lobate debris aprons, and valley networks. Such information will be useful to the planetary science community for constraining the regional geology, paleohydrology, and paleoclimate. This includes the assessment of: (a) whether the Argyre basin contained lakes [1], (b) the extent of reported flooding and glaciation, which includes ancient flows of volatiles into the impact basin [2-4], (c) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor [2,5], and (d) the extent of Argyre-related tectonism and its influence on the surrounding regions. Whereas the geologic mapping investigation of Timothy Parker focuses on the Argyre floor materials at 1:1,000,000 (MTMs -50036, -50043, -55036, -55043; see Fig. 1 for approximate corners of the area), our regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impact-related modification [6], and the southeast margin of the Thaumasia plateau using important new data sets (Fig. 1). Our mapping effort will incorporate the map information of Parker if it is made available during the project

    Geologic controls of erosion and sedimentation on Mars

    Get PDF
    Because Mars has had a history of diverse erosional and depositional styles, a variety of erosional landforms and sedimentary deposits can be seen on Viking orbiter images. Here we review how geologic processes involving rock, water, and structure have controlled erosion and sedimentation on Mars. Additionally, we review how further studies will help refine our understanding of these processes
    corecore