7 research outputs found

    False data injection attacks against low voltage distribution systems

    Get PDF
    The transformation of the conventional electrical grid into a digital ecosystem brings significant benefits, such as two-way communication between energy consumers and utilities, self-monitoring and pervasive controls. However, the advent of the smart electrical grid raises severe cybersecurity and privacy concerns, given the presence of legacy systems and communications protocols. This paper focuses on False Data Injection (FDI) cyberattacks against a low-voltage distribution system, taking full advantage of Man In The Middle (MITM) actions. The first cyberattack targets the communication between a smart meter and an Active Distribution Management System (ADMS), while the second FDI cyberattack targets the communication between a smart inverter and ADMS. In both cases, the cyberattacks affect the operation of the distribution transformer, thus resulting in devastating consequences. Moreover, this paper provides an Artificial Intelligence (AI)-based Intrusion Detection System (IDS), detecting and mitigating the above cyberattacks in a timely manner. The evaluation results demonstrate the efficiency of the proposed IDS

    ELECTRON: An Architectural Framework for Securing the Smart Electrical Grid with Federated Detection, Dynamic Risk Assessment and Self-Healing

    No full text
    The electrical grid has significantly evolved over the years, thus creating a smart paradigm, which is well known as the smart electrical grid. However, this evolution creates critical cybersecurity risks due to the vulnerable nature of the industrial systems and the involvement of new technologies. Therefore, in this paper, the ELECTRON architecture is presented as an integrated platform to detect, mitigate and prevent potential cyberthreats timely. ELECTRON combines both cybersecurity and energy defence mechanisms in a collaborative way. The key aspects of ELECTRON are (a) dynamic risk assessment, (b) asset certification, (c) federated intrusion detection and correlation, (d) Software Defined Networking (SDN) mitigation, (e) proactive islanding and (f) cybersecurity training and certification
    corecore