12,604 research outputs found
Microscopic Selection of Fluid Fingering Pattern
We study the issue of the selection of viscous fingering patterns in the
limit of small surface tension. Through detailed simulations of anisotropic
fingering, we demonstrate conclusively that no selection independent of the
small-scale cutoff (macroscopic selection) occurs in this system. Rather, the
small-scale cutoff completely controls the pattern, even on short time scales,
in accord with the theory of microscopic solvability. We demonstrate that
ordered patterns are dynamically selected only for not too small surface
tensions. For extremely small surface tensions, the system exhibits chaotic
behavior and no regular pattern is realized.Comment: 6 pages, 5 figure
Influence of the temperature on the depinning transition of driven interfaces
We study the dynamics of a driven interface in a two-dimensional random-field
Ising model close to the depinning transition at small but finite temperatures
T using Glauber dynamics. A square lattice is considered with an interface
initially in (11)-direction. The drift velocity v is analyzed for the first
time using finite size scaling at T = 0 and additionally finite temperature
scaling close to the depinning transition. In both cases a perfect data
collapse is obtained from which we deduce beta = 1/3 for the exponent which
determines the dependence of v on the driving field, nu = 1 for the exponent of
the correlation length and delta = 5 for the exponent which determines the
dependence of v on T.Comment: 5 pages, Latex, Figures included, to appear in Europhys. Let
Velocity Fluctuations in Dynamical Fracture: the Role of Microcracks
We address the velocity fluctuations of fastly moving cracks in stressed
materials. One possible mechanism for such fluctuations is the interaction of
the main crack with micro cracks (irrespective whether these are existing
material defects or they form during the crack evolution). We analyze carefully
the dynamics (in 2 space dimensions) of one macro and one micro crack, and
demonstrate that their interaction results in a {\em large} and {\em rapid}
velocity fluctuation, in qualitative correspondence with typical velocity
fluctuations observed in experiments. In developing the theory of the dynamical
interaction we invoke an approximation that affords a reduction in mathematical
complexity to a simple set of ordinary differential equations for the positions
of the cracks tips; we propose that this kind of approximation has a range of
usefulness that exceeds the present context.Comment: 7 pages, 7 figure
Phase-Field Model of Mode III Dynamic Fracture
We introduce a phenomenological continuum model for mode III dynamic fracture
that is based on the phase-field methodology used extensively to model
interfacial pattern formation. We couple a scalar field, which distinguishes
between ``broken'' and ``unbroken'' states of the system, to the displacement
field in a way that consistently includes both macroscopic elasticity and a
simple rotationally invariant short scale description of breaking. We report
two-dimensional simulations that yield steady-state crack motion in a strip
geometry above the Griffith threshold.Comment: submitted to PR
Anomalous Height Fluctuation Width in Crossover from Random to Coherent Surface Growths
We study an anomalous behavior of the height fluctuation width in the
crossover from random to coherent growths of surface for a stochastic model. In
the model, random numbers are assigned on perimeter sites of surface,
representing pinning strengths of disordered media. At each time, surface is
advanced at the site having minimum pinning strength in a random subset of
system rather than having global minimum. The subset is composed of a randomly
selected site and its neighbors. The height fluctuation width
exhibits the non-monotonic behavior with and it has a
minimum at . It is found numerically that scales as
, and the height fluctuation width at that minimum,
, scales as in 1+1 dimensions. It is found that
the subset-size is the characteristic size of the crossover from
the random surface growth in the KPZ universality, to the coherent surface
growth in the directed percolation universality.Comment: 13 postscript file
Simulation and analysis of in vitro DNA evolution
We study theoretically the in vitro evolution of a DNA sequence by binding to
a transcription factor. Using a simple model of protein-DNA binding and
available binding constants for the Mnt protein, we perform large-scale,
realistic simulations of evolution starting from a single DNA sequence. We
identify different parameter regimes characterized by distinct evolutionary
behaviors. For each regime we find analytical estimates which agree well with
simulation results. For small population sizes, the DNA evolutional path is a
random walk on a smooth landscape. While for large population sizes, the
evolution dynamics can be well described by a mean-field theory. We also study
how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA
Identification of SH ro-vibrational lines in R And
We report the identification of SH ro-vibrational lines in the
published high-resolution infrared spectrum of the S-type star, R And. This is
the first astronomical detection of this molecule. The lines show inverse
P-Cygni profiles, indicating infall motion of the molecular layer due to
stellar pulsation. A simple spherical shell model with a constant infall
velocity is adopted to determine the condition of the layer. It is found that a
single excitation temperature of 2200 K reproduces the observed line
intensities satisfactory. SH is located in a layer from 1.0 to ~1.1 stellar
radii, which is moving inward with a velocity of 9 km s-1. These results are
consistent with the previous measurements of CO transitions. The
estimated molecular abundance SH/H is 1x10^-7, consistent with a thermal
equilibrium calculation.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter
Measurement of electron screening in muonic lead
Energies of the transitions between high-lying (n≥6) states of muonic lead were accurately determined. The results are interpreted as a ∼2% test of the electron screening. The agreement between experiment and theory is good if it is assumed that the refilling of the electron K shell is fast. The present results furthermore severely restrict possible ionization of the electron L shell
- …
