942 research outputs found

    Bayesian network structure learning with causal effects in the presence of latent variables.

    Get PDF
    Latent variables may lead to spurious relationships that can be misinterpreted as causal relationships. In Bayesian Networks (BNs), this challenge is known as learning under causal insufficiency. Structure learning algorithms that assume causal insufficiency tend to reconstruct the ancestral graph of a BN, where bi-directed edges represent confounding and directed edges represent direct or ancestral relationships. This paper describes a hybrid structure learning algorithm, called CCHM, which combines the constraint-based part of cFCI with hill-climbing score-based learning. The score-based process incorporates Pearl s do-calculus to measure causal effects and orientate edges that would otherwise remain undirected, under the assumption the BN is a linear Structure Equation Model where data follow a multivariate Gaussian distribution. Experiments based on both randomised and well-known networks show that CCHM improves the state-of-the-art in terms of reconstructing the true ancestral graph

    Tuning structure learning algorithms with out-of-sample and resampling strategies

    Get PDF
    One of the challenges practitioners face when applying structure learning algorithms to their data involves determining a set of hyperparameters; otherwise, a set of hyperparameter defaults is assumed. The optimal hyperparameter configuration often depends on multiple factors, including the size and density of the usually unknown underlying true graph, the sample size of the input data, and the structure learning algorithm. We propose a novel hyperparameter tuning method, called the Out-of-sample Tuning for Structure Learning (OTSL), that employs out-of-sample and resampling strategies to estimate the optimal hyperparameter configuration for structure learning, given the input dataset and structure learning algorithm. Synthetic experiments show that employing OTSL to tune the hyperparameters of hybrid and score-based structure learning algorithms leads to improvements in graphical accuracy compared to the state-of-the-art. We also illustrate the applicability of this approach to real datasets from different disciplines

    Generalized seniority for the shell model with realistic interactions

    Full text link
    The generalized seniority scheme has long been proposed as a means of dramatically reducing the dimensionality of nuclear shell model calculations, when strong pairing correlations are present. However, systematic benchmark calculations, comparing results obtained in a model space truncated according to generalized seniority with those obtained in the full shell model space, are required to assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes are treated in the generalized seniority scheme, for generalized seniority v<=3. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell model space.Comment: 13 pages, 8 figures; published in Phys. Rev.

    The nucleon spin and momentum decomposition using lattice QCD simulations

    Full text link
    We determine within lattice QCD, the nucleon spin carried by valence and sea quarks, and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum carried by the quarks in the nucleon is Ju+d+s=0.408(61)stat.(48)syst.J_{u+d+s}{=}0.408(61)_{\rm stat.}(48)_{\rm syst.} and the gluon contribution is Jg=0.133(11)stat.(14)syst.J_g {=}0.133(11)_{\rm stat.}(14)_{\rm syst.} giving a total of JN=0.54(6)stat.(5)syst.J_N{=}0.54(6)_{\rm stat.}(5)_{\rm syst.} consistent with the spin sum. For the quark intrinsic spin contribution we obtain 12ΔΣu+d+s=0.201(17)stat.(5)syst.\frac{1}{2}\Delta \Sigma_{u+d+s}{=}0.201(17)_{\rm stat.}(5)_{\rm syst.}. All quantities are given in the MS‾\overline{\textrm{MS}} scheme at 2~GeV. The quark and gluon momentum fractions are also computed and add up to ⟨x⟩u+d+s+⟨x⟩g=0.804(121)stat.(95)syst.+0.267(12)stat.(10)syst.=1.07(12)stat.(10)syst.\langle x\rangle_{u+d+s}+\langle x\rangle_g{=}0.804(121)_{\rm stat.}(95)_{\rm syst.}+0.267(12)_{\rm stat.}(10)_{\rm syst.}{=}1.07(12)_{\rm stat.}(10)_{\rm syst.} satisfying the momentum sum.Comment: Version published in PR

    Information fusion between knowledge and data in Bayesian network structure learning

    Full text link
    Bayesian Networks (BNs) have become a powerful technology for reasoning under uncertainty, particularly in areas that require causal assumptions that enable us to simulate the effect of intervention. The graphical structure of these models can be determined by causal knowledge, learnt from data, or a combination of both. While it seems plausible that the best approach in constructing a causal graph involves combining knowledge with machine learning, this approach remains underused in practice. We implement and evaluate 10 knowledge approaches with application to different case studies and BN structure learning algorithms available in the open-source Bayesys structure learning system. The approaches enable us to specify pre-existing knowledge that can be obtained from heterogeneous sources, to constrain or guide structure learning. Each approach is assessed in terms of structure learning effectiveness and efficiency, including graphical accuracy, model fitting, complexity, and runtime; making this the first paper that provides a comparative evaluation of a wide range of knowledge approaches for BN structure learning. Because the value of knowledge depends on what data are available, we illustrate the results both with limited and big data. While the overall results show that knowledge becomes less important with big data due to higher learning accuracy rendering knowledge less important, some of the knowledge approaches are actually found to be more important with big data. Amongst the main conclusions is the observation that reduced search space obtained from knowledge does not always imply reduced computational complexity, perhaps because the relationships implied by the data and knowledge are in tension
    • …
    corecore