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Abstract 

One of the challenges practitioners face when applying structure learning algorithms to their 

data involves determining a set of hyperparameters; otherwise, a set of hyperparameter defaults 

is assumed. The optimal hyperparameter configuration often depends on multiple factors, 

including the size and density of the usually unknown underlying true graph, the sample size of 

the input data, and the structure learning algorithm. We propose a novel hyperparameter tuning 

method, called the Out-of-sample Tuning for Structure Learning (OTSL), that employs out-of-

sample and resampling strategies to estimate the optimal hyperparameter configuration for 

structure learning, given the input data set and structure learning algorithm. Synthetic 

experiments show that employing OTSL to tune the hyperparameters of hybrid and score-based 

structure learning algorithms leads to improvements in graphical accuracy compared to the state-

of-the-art. We also illustrate the applicability of this approach to real datasets from different 

disciplines. 

Keywords: Bayesian networks, bootstrapping, causal discovery, hyperparameter optimisation, 

probabilistic graphical models. 

 

1. Introduction 

A Bayesian Network (BN) is a probabilistic graphical model that enables decision makers to reason 

under uncertainty, particularly in complex systems that require answers to interventional and 

counterfactual questions (Pearl, 1988). It  is represented by a Directed Acyclic Graph (DAG) G which 

consists of a set of nodes 𝐕 = {A1, … , AV} corresponding to random variables and a set of arcs 

corresponding to the dependence relationships between variables in a BN or the causal relationships in 

a causal BN, where an arc Ak→ Aj is viewed as Ak being the direct cause of node Aj. The causal or 

dependency relationships are represented by a set of conditional probabilities P(Ai|parent(Ai)), where 

parent(Ai) refers to the parent-set of Ai. The joint distribution over all nodes 𝐕 is defined as the product 

of all conditional probabilities as follows: 

P(A1, . . . , AV) =  ∏ P(Ai|parent(Ai))

V

i=1

 

The graphical structure of a BN model refers to the way in which the nodes and edges are 

organised. In the context of BN structure learning, the objective involves finding the most appropriate 

structure that best represents the probabilistic relationships amongst the input variables. Conversely, in 

causal discovery (i.e., learning causal BNs), the goal is explicitly to uncover structures where the 

relationships are presumed to be causal. Learning the graph structure of a BN from data, whether causal 

or not, is generally NP-hard where the number of possible graphs grows super-exponentially in the 

number of variables, making it computationally intractable. 
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There are two main classes of unsupervised structure learning algorithms; namely constraint-

based and score-based learning. A constraint-based algorithm typically relies on statistical Conditional 

Independence (CI) tests (see Section 2.1) to construct a graph skeleton, and then orientate some of the 

edges that make up the skeleton. On the other hand, a score-based algorithm involves a search method 

that traverses the space of possible graphs, and returns the graph with the highest objective score (see 

Section 2.2). Algorithms that combine both of these learning strategies are common in the literature, 

and they are referred to as hybrid learning algorithms. 

There are hundreds of structure learning algorithms in the literature (Kitson et al., 2023). One of 

the most well-established constraint-based algorithms is PC-Stable by Colombo and Maathuis (2014), 

which is based on PC by Spirtes and Glymour (1991) but addresses PC’s sensitivity to the order of the 

variables as read from data. PC-Stable returns a Partially DAG (PDAG) that contains directed and 

undirected edges, and which can sometimes be converted into a Completed PDAG (CPDAG) that 

represents a set of Markov equivalence DAGs that encode the same CI statements. For instance, a serial 

connection (A → B → C) and a divergence connection (A ← B → C) encode A ⊥ C | B, indicating that 

the direction of these edges cannot be determined purely from observational data. Score-based 

algorithms will often return a DAG or a CPDAG output. However, if a score-based algorithm employs 

a score-equivalent objective function, the DAG output will represent a random DAG of the highest 

scoring Markov equivalence class (or CPDAG).  

Traversing the search-space of graphs is computationally expensive and hence, most score-based 

algorithms tend to be approximate. For example, the Hill-Climing (HC) algorithm by Heckerman et al. 

(1995) and the FGES algorithm by Ramsey (2015) rely on greedy heuristics. HC performs hill-climbing 

search in the space of DAGs, whereas FGES greedily searches the space of CPDAGs. Approximate 

solutions include hybrid algorithms such as the Max Min Hill-Climbing (MMHC) by Tsamardinos et 

al. (2006), and hybrid MCMC by Kuipers et al. (2022). Hybrid algorithms tend to involve a restrict 

phase and a maximisation phase, and MMHC is a widely-used example of this; i.e., it starts with 

constraint-based learning and uses CI tests to determine the restricted space of DAGs, followed by 

applying hill-climbing search to the reduced space of DAGs. Hybrid MCMC works in a similar manner 

and starts by creating a restricted search space using PC, followed by MCMC sampling in the node 

ordering space of DAGs. It is also worth noting the NOTEARS algorithm (Zheng et al., 2018) which 

introduces a novel score-based approach, that combines continuous optimisation with an acyclicity 

constraint, for DAG discovery suitable for high-dimensional continuous data learning.  

An issue with these algorithms is that they come with a set of unoptimised hyperparameters. 

Because there is little guidance on how to choose these hyperparameters, most papers in the literature 

use these algorithms with either their hyperparameter defaults, or test them over a restricted set of 

different plausible hyperparameter values. This approach, which can be viewed as a grid search over all 

hyperparameter combinations, is also supported by Yang and Shami (2020) who provide a 

comprehensive review of hyperparameter tuning methods with their available libraries, and discuss 

suitable tuning methods for common machine learning algorithms. However, evaluating machine 

learning algorithms over different combinations of plausible hyperparameters is, in general, a 

computationally expensive and a time-consuming process. On this basis, Filippou et al. (2023) propose 

a pipeline to handle the generation and evaluation of machine learning models, including 

hyperparameter optimisation, with a focus on improving the efficiency of model creation.  

In this paper, we focus on hyperparameter tuning for structure learning algorithms that are 

typically used to recover causal relationships. These algorithms can generally be divided into in-sample 

tuning and out-of-sample tuning methods, where the former utilises all available data and the latter uses 

a subset of the available data as a test data to tune hyperparameter configurations on data points that 

were not included in the training set. In-sample tuning approaches include the Stability Approach to 

Regularization Selection (StARS) by Liu et al. (2010), which optimises for model stability by selecting 
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the hyperparameter configuration that generates the most stable learnt graphs over perturbations of the 

input data. Out-of-sample tuning approaches include the Out-of-sample Causal Tuning (OCT) by Biza 

et al. (2020, 2022), which performs cross-validation to identify the Markov Blankets (MBs) for each 

variable. The MB of a variable A represents a set of variables that make A independent of all other 

variables, and can serve as a feature selection method. Specifically, the MB of A includes the parents 

of A, its children, and the parents of its children. The OCT algorithm uses MBs to obtain a Random 

Forest model and optimises hyperparameters for predictive accuracy over test data. Experimental results 

showed that it performed well against the in-sample StARS approach discussed above.  

This paper proposes a novel hyperparameter tuning method that employs out-of-sample and 

resampling strategies to estimate the optimal hyperparameter configuration for structure learning, given 

the input dataset and structure learning algorithm. This optimisation approach is tailored for 

unsupervised structure learning algorithms due to the necessity of adapting to structural objective scores 

and graphical metrics, as well as accommodating non-standard hyperparameter spaces that are essential 

for effectively addressing the computational efficiency challenges inherent to structure learning 

algorithms that are typically used to explore intractable search-spaces of graphical structures. The paper 

is organised as follows: Section 2 provides preliminary information on hyperparameters in the context 

of structure learning, Section 3 describes the proposed hyperparameter tuning approach, Section 4 

presents the results, and we provide our concluding remarks in Section 5. 

2. Preliminary Information 

This section provides an overview of the common CI tests used by constraint-based algorithms, and the 

common objective functions used by score-based algorithms. Subsections 2.1 and 2.2 cover the 

hyperparameters that could be tuned for functions that test for CI and for objective functions 

respectively.  

2.1. Functions that test for Conditional Independence (CI) 

 

2.1.1. Pearson’s chi2 

 

The Pearson’s chi2 statistical test (Pearson, 1900) is a commonly used function for testing CI given 

discrete data. It assumes the null hypothesis that node A and node B are conditionally independent given 

the set of nodes 𝐂. The test produces a p-value of the test statistic which is used to determine whether 

to reject or not the null hypothesis. The significance threshold (α) serves as the hyperparameter of the 

Pearson’s chi2 test, and is set to 0.05 by convention. If the p-value is less than α, the null hypothesis is 

rejected, and node A and node B are assumed to be conditionally dependent given 𝐂. If the p-value is 

greater than α, the null hypothesis is not rejected and hence, node A and node B are assumed to be 

conditionally independent given 𝐂. The formula for the Pearson’s chi2 test is: 

 

χ2 = 2 ∑
(nabc − mabc)2

nabc
 

 

where nabc is the number of instances in the data D where A = a, B = b and 𝐂 = c, mabc =  
nac⋅nbc

nc
, 

and the process of calculating the number of instances of nac, nbc and nc is analogous to that of nabc. 

We will use Chi2 interchangeably with the Pearson’s chi2 test for the rest of this paper. 

 

2.1.2. Mutual information (MI)  

 

Shannon’s Mutual Information (MI) was introduced as a measure of mutual dependence between two 

discrete variables (Cover and Thomas 2006). The MI between two nodes A and B is defined as: 
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MI(A, B) = ∑ p̂(a, b)ln [
p̂(a, b)

p̂(a)p̂(b)
]

a,b

 

 

where p̂(a, b) refers to p̂(A = a, B = b) the maximum likelihood estimate of p(a, b). It is calculated as 

p̂(a, b) =
nab

n
, where n is the total number of samples, and the process of calculating p̂(a) and p̂(b) is 

analogous to that of p̂(a, b). Consequently, conditional MI (Sechidis et al., 2019) can be used for CI 

test, defined as: 

 

MI(A, B | 𝐂) =  ∑ p̂(a, b, c)ln

a,b,c

[
p̂(a, b, c)p̂(c)

p̂(a, c) ⋅ p̂(b, c)
] 

 

where p̂(a, b, c) = 
nabc

n
, and the process of calculating p̂(a, c), p̂(b, c) and p̂(c) is analogous to that of 

p̂(a, b, c). The significance threshold α serves the same purposed as in the Chi2 test, i.e., if MI(A, B | 𝐂) 

is greater than α, node A and node B are conditionally independent given 𝐂.  

2.1.3. Shrinkage Mutual Information test (MI-sh) 

James and Stein (1961) proposed a shrinkage estimate of MI for two random variables in the form of a 

regulariser, which they call the James-Stein-type shrinkage intensity λ. The conditional MI-sh test 

(Scutari and Brogini, 2012) between A and B given 𝐂 is defined as the expectation of MI − sh(A, B|𝐂) 

with respect to the distribution of 𝐂. As with the Chi2 and MI tests, they use the significance threshold 

α to accept or reject the same null hypothesis. The MI-sh test is described as follows: 

MI − sh(A, B| 𝐂) = ∑ pshrink(a, b, c)log [
pshrink(a, b, c)pshrink(c)

pshrink(a, c)pshrink(b, c)
]

a,b,c

 

where; 

pshrink(a, b, c) = λ
1

|A||B||𝐂|
+ (1 − λ)p̂(a, b, c)   

 

pshrink(a, c) = λ
1

|A||𝐂|
+ (1 − λ)p̂(a, c) 

pshrink(b, c) = λ
1

|B||𝐂|
+ (1 − λ)p̂(b, c) 

pshrink(c) = λ
1

|𝐂|
+ (1 − λ)p̂(c) 

 

where |A|, |B| and |𝐂| denote the number of states of variables A, B and the set of variables 𝐂 

respectively, and λ is the shrinkage intensity. Hausser and Strimmer (2008) proposed a closed-form 

estimator λ∗ that employs James-Stein-type shrinkage making it highly efficient computationally. In the 

case of estimating a single parameter, λ∗ is defined as: 

 

λ∗ =
1−∑ (p̂k)2V

k=1

(n−1) ∑ (
1

V
−p̂k)2V

k=1

  

where λ∗ = [0,1] is the shrinkage intensity, λ∗ = 0 means no shrinkage and λ∗ = 1 full shrinkage, n is 

the sample size, and p̂1 … , p̂V are the probabilities of a given variable where ∑ p̂kk = 1. 

2.2. Objective functions 

2.2.1. Bayesian Dirichlet with equivalent uniforms (𝐵𝐷𝑒𝑢𝑖𝑠𝑠)  
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BDeuiss is an objective function proposed by Heckerman et al. (1995) to determine the maximum a 

posteriori (MAP) structure by assuming equivalent uniform priors for a graph G. BDeuiss is score-

equivalent, which means that it generates the same score for DAGs which entail the same joint 

probability distribution and are part of the same Markov equivalence class. Moreover, BDeuiss is a 

decomposable score where the score of a graph represents the sum of BDeuiss scores allocated to each 

node, given its parents, that is part of that graph. Decomposability is an important property that makes 

objective functions computationally efficient for structure learning. Traversing the search-space of 

graphs with a decomposable score implies that the scores of nodes that have not had a change to their 

parent-set can be carried over from the previous iteration, rather than re-computed. 

Because the BDeuiss score is typically represented by a small value, its closed-form solution is 

expressed as a log function: 

BDeuiss(G, D) = ∑ ∑ [log
Γ (iss

q
i

⁄ )

Γ (iss
q

i
⁄ + Nij)

+  ∑ log
Γ (iss

riqi
⁄ + Nijk)

Γ (iss
riqi

⁄ )

ri

k=1

]

qi

j=1

V

i=1

  

 

where G is a DAG, D is observational data, V is the number of variables, Γ is the Gamma function, qi 

denotes the number of possible combinations of values of parents of node Ai and is equal to 1 if Ai has 

no parents, j is the index of that combination, Nijk represents the number of instances in the data D 

where node Ai takes on its kth value and its parents the jth combination of values, ri is the number of 

states of node Ai, and Nij = ∑ Nijk
ri 
k=1  represents the total number of instances in data D where parents 

of node Ai have the jth combination of values. The imaginary sample size (iss) represents the 

hyperparameter of BDeuiss and it is often referred to the user’s prior belief about the impact of the prior 

distribution on the objective score. Silander et al. (2006) observed that increasing iss led to a higher 

number of arcs and hence, denser learnt structures. They suggest that a reasonable iss for small sample 

sizes is between 1 to 20. In this work, we assume that the default iss hyperparameter for BDeuiss score 

is 1, as it is set in most studies and implementations of BDeuiss. 

2.2.1. Bayesian Information Criterion (BIC)  

Schwarz (1978) proposed BIC as a model-selection function to reduce the risk of model-overfitting by 

balancing the goodness-of-fit with model dimensionality. It is based on Occam’s razor principle in that 

the simplest solution is usually the best solution. Like BDeuiss, BIC is decomposable and score 

equivalent. The general form of the score for discrete variables is expressed as: 

 

BIC(G, D) = LL(G, D) −
log(n)

2
F 

 

where n is the sample size, LL(G, D) denotes the Log-Likelihood (LL) of the data D given the graph G: 

 

LL(G, D) = log[p̂(D|G)] = ∑ ∑ ∑ Nijk

ri

k=1

qi

j=1

V

i=1

log
Nijk

Nij
 

 

and F is the complexity penalty represented by the number of free parameters of the model. It can be 

expressed as: 

F = ∑(ri − 1)qi

V

i=1
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Chen and Chen (2008) presented a modified version of BIC which they call Extended BIC (EBIC) 

that can be used to control the density of the learnt graph. This is achieved by introducing the 

hyperparameter 0 ≤ γ that penalises the number of free parameters in the BN, which in turn are 

inversely proportional to the number of arcs in the learnt graph. This is equivalent to saying that large 

values of γ will favour sparser graphs. EBIC is defined as:  

EBICγ(G, D) = LL(G, D) −
log(n)

2
F − γ log(V) F, 0 ≤ γ 

 

Foygel and Drton (2010) studied the impact of the hyperparameter γ′ ∈ [0,1] and found that γ′= 

0.5 is best in most synthetic experiments. However, it is acknowledged that the optimal value of γ′ is 

not invariant and hence, its optimisation remains an open question. In this paper, we define 

EBICnormalised γ as: 

 

EBICnormalised γ(G, D) = LL(G, D) −
log(n)

2
F − γ′ log(V) F,   0 ≤ γ′ ≤ 1 

 

where the hyperparameter 0 ≤ γ is normalised to γ′ ∈ [0,1]. Thus, γ is the hyperparameter of EBICγ 

and EBICnormalised γ where EBICγ=0 = EBICnormalised γ=0 = BIC. 

 

3. Out-of-sample Tuning for Structure Learning (OTSL) 

This section describes the algorithm we propose for hyperparameter tuning, which we call Out-of-

sample Tuning for Structure Learning (OTSL). OTSL determines the optimal hyperparameter 

configuration for a structure learning algorithm by performing out-of-sample resampling and 

optimisation on test data.  

3.1. Resampling with replacement with multiple training and test datasets  

We consider the out-of-sample tuning approach OCT by Biza et al. (2020, 2022). However, instead of 

utilising cross-validation as in the original studies, we employ an approach that relies on resampling 

with replacement. Our decision is motivated by the relevant studies of McLatchie et al. (2023), Rao et 

al. (2008) and Piironen et al. (2016) that empirically show that cross-validation led to the learning of 

complex models, with a tendency to underperform when the input data contains many variables with a 

relatively small sample size. On the other hand, resampling with replacement in structure learning was 

found to improve the accuracy of the learnt graphical structure (Chun, 2011; Guo et al., 2022). 

Resampling with replacement or bootstrapping (Efron and Tibshirani, 1994) is commonly used 

for sampling in statistics and machine learning. Unlike traditional cross-validation where each fold is 

drawn from a dataset without replacement, bootstrapping involves resampling with replacement to 

produce new data for validation that may contain multiple instances of the original cases.  We adopt 

this strategy for the OTSL algorithm and use resampling with replacement to generate multiple datasets 

for training and testing from a single observational dataset, where the training datasets are used for 

structure learning and the test datasets for hyperparameter tuning. 

3.2. Tuning hyperparameters on test data 

Section 2 describes both the BIC and BDeuiss scores, which are commonly used as objective functions 

in score-based structure learning algorithms. However, an issue with these model-selection scores is 

that the graph they score the highest tends not to be the ground truth graph. The model averaging MAHC 

by Constantinou et al. (2022) demonstrates that output graphs with slightly lower average BIC score 

may improve the graphical accuracy of the learnt graph, especially in the presence of data noise which 

is inevitably present in real data. This model averaging approach motivates the design of the proposed 
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tuning approach, especially in that it focuses on maximising model selection by taking the average over 

multiple data splits. 

We use the illustrations in Figure 1 to motivate our optimisation strategy, which is based on the 

HC algorithm and synthetic ALARM data with sample size 10k. Figure 1a presents the relationship 

between the graphical metric F1 (refer to Section 4) and the objective score BDeuiss when iss varies 

between 1 and 20. The tuning method involves resampling with replacement, where the input dataset 

of 10k is resampled 10 times and, at each iteration, split 9-to-1 for training and testing (refer to 

Algorithm 1). Specifically, 

i. BDeuiss is the tuning score optimised for different iss hyperparameters. Note that at each 

iteration of iss, the tuned score represents the average BDeuiss score over 10 iterations of 

resampling (refer to Algorithms 1 and 3). 

ii. F1 is the score for each graph recovered at different values of iss in BDeuiss. 

The illustration shows that it may be possible to optimise for iss in BDeuiss such that it improves the F1 

score. Specifically, Figure 1a shows that the optimal value for iss in BDeuiss is 6, which in turn leads to 

a 0.57% improvement in F1 relative to the unoptimised hyperparameter default when iss = 1. 

Figure 1b repeats the same exercise and assumes that the tuning score is EBICnormalised γ, where 

γ in EBICγ varies between 0 and 19. In this example, we notice that the optimal γ hyperparameter is γ = 

3 and happens to lead to the highest F1 score; an improvement of 11.63% relative to the unoptimised 

EBICnormalised γ score when γ = 0. 

 

                                            (a)                                                                         (b)                                                         

Figure 1: The F1 scores over different hyperparameter values for BDeuiss and EBICγ. The illustration is based 

on the HC algorithm and synthetic ALARM data with a sample size 10k. 

 

3.3. The Out-of-sample Tuning for Structure Learning (OTSL) algorithm 
 

Algorithm 1 describes the OTSL algorithm. As described in Algorithm 1, OTSL takes as input a dataset 

D, the number of iterations K for resampling (we assume 10 as default), the tuning score (we explore 

BDeuiss and EBICnormalised γ in this study) and a list of configurations C that specify the structure 

learning algorithm along with its hyperparameters and a range of those hyperparameters to be explored.  

OTSL starts by resampling K training and test datasets given the input data. It then applies the 

specified structure learning algorithm with configurations C to each training dataset in K, and optimises 

the hyperparameters of either BDeuiss or EBICnormalised γ on each corresponding test dataset in K. The 

optimal configuration is the one that generates the highest average tuning score over K training and test 
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datasets, and is returned as the optimal configuration. This process is described in Algorithms 1, 2 and 

3, where Algorithms 2 and 3 describe the tuning process for EBICnormalised γ and BDeuiss respectively. 

 

 

   Algorithm 1: Out-of-sample Tuning for Structure Learning (OTSL)  

Input: dataset D, a list of configurations 𝐂, iteration K, score for tuning 

Output: c′ 

1: The sample size of train data X = the number of instances of D  (K-1) /K 

2: The sample size of test data Y = the number of instances of D / K 

3: For k = 1 to K 

4:          Dk,training ← resample with replacement (D) with sample size X 

5:           Dk,test← resample with replacement (D \ Dk,training) with sample size Y 

6: For c ∈ 𝐂 // find the optimal configuration 

7: For k = 1 to K 

8:    Gc,k  ← structure learning algorithm (Dk,training, c) 

9:       If Gc,k is CPDAG 

10        Gc,k ← CPDAGtoDAG (Gc,k)  

11:              If Gc,k is PDAG 

12:                                 Gc,k ← PDAGtoDAG (Gc,k) 

13:               Sc,k ← score_for_tuning(Gc,k, Dk,test, c) // scoring functions given test data and hyperparameters 

14: Sc = average Sc,k over K 

15: c′ = arg max Sc 

16: return c′  

 
 

 

   Algorithm 2: score_for_tuning (EBICnormalised γ) 

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂 

Output: EBICnormalised γ  

1: If c contains γ  

2:       score = EBICnormalised γ(G, 𝒟) 

3:    Else 

4:       score = EBICnormalised γ=0(G, 𝒟)  

 

 

 

   Algorithm 3: score_for_tuning (BDeuiss) 

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂 

Output: BDeuiss  

1: If c contains iss  

2:       score = BDeuiss(G, 𝒟) 

3:    Else 

4:       score = BDeuiss=1(G, 𝒟)  
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4. Case studies and experimental setup 

We consider 10 real-world BNs whose properties are provided in Table 1. Six of them are taken from 

the bnlearn (Scutari, 2019) and Bayesys (Constantinou et al., 2020) repositories and are used to generate 

synthetic data with sample sizes of 1k and 10k. In addition to the six synthetically generated datasets, 

we also consider four real datasets which we discuss in more detail in subsection 5.2.  

 

Synthetic data 
Data source 

Variables Edges Max in-degree 
Free 

parameters 

Asia  Bayesys 

(Constantinou 

et al., 2020) 

8 8 2 18 

Sports  9 15 2 1,049 

Property  27 31 3 3,056 

Alarm  37 46 4 509 

Hailfinder  bnlearn 

(Scutari, 2019) 

56 66 4 2,656 

Hepar2 70 123 6 1,453 

Real data Data source Variables Sample size 

Diarrhoea Bayesys 

(Constantinou 

et al., 2020) 

28 259,627 

Covid-19  65 866 

ForMed 56 953 

Weather 
NCEP (Kalnay 

et al., 1996) 
648 900 

 

Table 1. The properties of the 10 case studies. 

 

Structure learning 

algorithm 

Configuration 

CI test /  

Objective function 

Hyperparameter 

𝛼  γ  iss  

Constraint-based 

PC-Stable 
Chi2, MI, MI-sh 0.01, [0.05], 

0.1 

[0] [1] 

Score-based     

HC, FGES  BDeuiss, EBICγ - [0], 1, 2, …, 19 [1], 2, 3, …, 20 

Hybrid based     

MCMC Chi2/ BDeuiss [0.05] - [1], 2, 3, …, 20 

MMHC Chi2/ BDeuiss, EBICγ  0.01, [0.05] [0], 1, 2, …, 9 [1], 2, 3, …, 10 

 

Table 2: The algorithms tested for hyperparameter optimisation, along with the set of hyperparameters optimised. 

Brackets indicate the hyperparameter defaults. The size of the separation-set for CI tests is set to -1 to allow for 

an unlimited size of conditioning sets. 

 

Table 2 lists the five structure learning algorithms considered for hyperparameter optimisation, 

spanning all three classes of structure learning. Because OTSL is designed to optimise either 

EBICnormalised γ or BDeuiss, we follow a somewhat different strategy when optimising constraint-based 

learning algorithms which do not involve score-based hyperparameters such as iss and γ. As shown in 

Table 2, the PC-Stable algorithm is tuned by exploring the three different thresholds for significance 

test 𝛼 by maximising either EBIC or BDeu given their hyperparameter defaults; i.e., we iterate over 

hyperparameter values for 𝛼 – not for iss or γ – when the input algorithm is constraint-based. 

Specifically, a) for constraint-based PC-stable we optimise hyperparameter α which represents the 

statistical significance threshold for either Chi2, MI, or MI-sh (refer to Section 2.1), b) for score-based 

HC and FGES we optimise hyperparameter γ in EBICγ and iss in BDeuiss (refer to Section 2.2), and c) 

for hybrid algorithms MCMC and MMHC we optimise for all three possible hyperparameters. 

However, as shown in Table 2, we reduce the size of the set of possible hyperparameters to be explored 

for hybrid algorithms due to the much larger number of possible combinations of hyperparameters they 

produce. For example, if we were to explore the same range of hyperparameters for MMHC then that 

would require 1,920 structure learning experiments for that algorithm alone; i.e., 3 hyperparameters for 
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𝛼 × 20 for γ or 3 hyperparameters for 𝛼 × 20 for iss for each case study and sample size. Because this 

study involves adjusting the default hyperparameters to values that optimise a given score or objective 

function, we also explore how the performance of the algorithms could change if this hyperparameter 

modification were randomised. The randomisation process involves random hyperparameter 

assignment across the same hyperparameter ranges investigated, and recording the average score 

obtained across 10 randomisations per experiment.  

 We use the F1 and Structural Hamming Distance (SHD) by Tsamardinos et al. (2006) graphical 

metrics to assess synthetic experiments where the ground truth DAG is known. The F1 metric represents 

the harmonic mean of Precision (P) and Recall (R) where F1 = 2
𝑃.𝑅

𝑃+𝑅
 , and the SHD score represents the 

number of edge additions, deletions and reversals needed to convert the learnt DAG into the true DAG. 

The scores reported in this study reflect comparisons between learnt and true DAGs. If a structure 

learning algorithm produces a CPDAG then a random DAG is generated from the learnt CPDAG.  

The hyperparameter optimisation performance of OTSL is assessed with reference to other 

hyperparameter tuning methods that are specifically proposed for tuning structure learning algorithms, 

and specifically the StARS and OCT approaches discussed in the introduction. In addition, we also 

consider the BIC and the Akaike Information Criterion (AIC) model-selection functions as baselines 

for tuning, consistent with how they are used in other relevant studies for evaluation purposes, where 

tuning is determined by the hyperparameter value that maximises the given model-selection function 

(Biza et al., 2020). 

We conduct all experiments by performing 10 iterations of resampling for both OTSL and StARS, 

and assuming a 10-fold cross-validation for OCT. We set a runtime limit of 24 hours for each 

experiment and yet, this was not enough to complete all experiments. Because most tuning experiments 

failed to complete learning on the real-world Diarrhoea and Weather datasets within the runtime limit, 

we had to modify the experimental setup for these two datasets. The issue with the Diarrhoea dataset is 

that it contains a large number of samples (259,627), which we address by modifying the resampling 

technique such that it creates 10 sets of training data restricted to a sample size of 9k and 10 sets of test 

data restricted to a sample size of 1k, derived from the 259,627 instances of the Diarrhoea dataset. On 

the other hand, the issue with the Weather dataset is that it contains a large number of variables, and we 

address this by reducing the number of iterations for resampling to 5 for the Weather dataset.  

Experiments with real data provide no access to ground truth. As a result, it is difficult to judge 

the unsupervised learning performance of these algorithms on real data. Therefore, we use real data to 

primarily investigate the issues we may face, specifically with large datasets as discussed above, and to 

illustrate how OTSL influences the structure learning performance of the different algorithms 

considered, in terms of model-selection, goodness-of-fit, and model dimensionality.  

We test PC-Stable, HC and MMHC using the bnlearn R package (Scutari, 2019). FGES using 

Tetrad-based rcausal R package (Wongchokprasitti, 2019), and MCMC (the order-MCMC version) 

using the BiDAG R package (Suter et al., 2023). The model-selection scores of BIC and AIC, as well 

as the StARS and OCT tuning algorithms are tested using the MATLAB implementations available at: 

https://github.com/mensxmachina/OCT. The implementation of OTSL is made available online at 

https://github.com/kiattikunc/OTSL. All experiments were conducted on a High Performance 

Computing (HPC) cluster with 32 GBs of RAM, whereas the experiments involving the FGES 

algorithm were ran on a laptop with an M1 CPU at 3.2 GHz and 8GB of RAM due to compatibility 

issues with the HPC cluster. 

Overall, this study has carried out 7,736 structure learning experiments across the 10 case studies 

specified in Table 1, two sample sizes (1k and 10k samples), five structure learning algorithms (PC-

Stable, HC, MMHC, MCMC, and FGES), five hyperparameter tuning approaches (AIC, BIC, OTSL, 

StARS, and OCT), with three hyperparameter baseline settings specified in subsection 5.1.1 (Default 

https://github.com/mensxmachina/OCT
https://github.com/kiattikunc/OTSL
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A, Default B, and randomised), and five objective scores or statistical tests for optimisation shown in 

Table 2 (Chi2, MI, Mi-sh, EBICγ and BDeuiss). 

5. Empirical results 

5.1 Results based on synthetic data  

5.1.1 Impact of hyperparameter tuning on graphical structure  

In addition to randomising hyperparameter values, the baseline comparisons include two different cases 

for hyperparameter defaults: a) Default A where 𝛼 = 0.05 for Chi2 test and γ = 0 for EBICγ, and b) 

Default B where and 𝛼 = 0.05 for Chi2 test and iss = 1 for BDeuiss. Figure 2 compares the F1 scores 

obtained by the four specified algorithms across all synthetic experiments, with and without (i.e., 

Default A) hyperparameter optimisation. These default hyperparameters reflect the typical scenarios in 

the literature where structure learning algorithms are applied as implemented in the relevant libraries, 

without hyperparameter tuning. It is noted that most previous studies tend to utilise these algorithms 

with their default settings as provided in existing libraries, partly because these hyperparameter defaults 

are known to be generally effective, and partly due to the lack of guidance on selecting or optimising 

these hyperparameters values for structure learning. In this set of experiments, hyperparameter 

optimisation is restricted to EBICnormalised γ and hence, the MCMC algorithm is not included in these 

results since EBICγ is not available in the BiDAG R package. Figure 2a depicts the results when trained 

with datasets of sample size 1k, whereas Figure 2b depicts the results when trained with datasets of 

sample size 10k. 

Across the 12 comparisons shown in both Figures 2a and 2b, the results show that the 

hyperparameter tuning applied by OTSL improves the average F1 scores in 9 cases, and slightly 

decreases performance in 3 cases; i.e., for Property at both 1k and 10k sample sizes and for Sports at 

10k sample size. In Figure 2a, the average F1 score across all DAGs learnt over the six cases and four 

structure learning algorithms is 0.448 for default configurations, and increases (improves) to 0.458 (or 

by ~2.3%) when tuning the hyperparameters of EBICnormalised γ. Figure 2b repeats these experiments 

for sample sizes 10k and shows that the results remain consistent with those obtained when the sample 

size is set to 1k. Specifically, the average F1 score across all DAGs is 0.5 for the default configurations, 

and increases to 0.513 (or by ~2.5%) when tuned with OTSL.  

Figures 3a and 3b repeat the experiments of Figures 2a and 2b, and use BDeuiss as the tuning 

score instead of EBICnormalised γ. In this case, however, the results show that the hyperparameter tuning 

applied by OTSL did not improve the average F1 scores. Specifically, the average F1 scores for the 

default configurations (Default B) are 0.51 and 0.56 for sample sizes 1k and 10k respectively, and 0.506 

and 0.56 respectively when tuned with OTSL.  
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                                      (a)                                                                         (b)                                                         

Figure 2: The average F1 scores with and without hyperparameter tuning. Untuned algorithms assume Default A 

configuration and tuned algorithms assume OTSL with EBICnormalised γ as the tuning score. The average scores 

are derived over four structure learning algorithms (excluding MCMC that does not support EBICγ), and six 

synthetic case studies. The boxplots represent the highest and lowest F1 scores with outliers, × is the mean and ‒ 

is the median. The lower edge of the boxplot represents the first (lower) quartile, while the higher edge of the 

boxplot represents the third (upper) quartile. Figure (a) depicts the scores for datasets with sample size 1k, and (b) 

with sample size 10k. 

 

Table 3 details the average change in F1 and SHD scores for each structure learning algorithm, 

when we randomise their hyperparameters or tune them with OTSL, relative to the hyperparameter 

default configurations (Default A). The average change depicted in Table 3 is derived across all six case 

studies, and over both 1k and 10k sample sizes per case study. The positive scores indicate a percentage 

increase (improvement) in the F1 score or a percentage decrease (improvement) in the SHD score, while 

the negative scores indicate a percentage decrease (worsening) in the F1 score or a percentage increase 

(worsening) in the SHD score. The results depicted in Table 3 show that randomising the 

hyperparameters leads to an average worsening of 1.71% in F1 score, and an average worsening of 

4.89% in SHD score, relative to the results obtained when assuming hyperparameter defaults. On the 

other hand, the F1 score improves by 3.9% and the SHD score improves by 6.12% respectively when 

optimising the hyperparameters using OTSL. However, the constraint-based PC-Stable generates poor 

tuning performance with the F1 score worsens by 1.81% and the SHD score worsening by 1.08%. This 

might suggest that the score-based tuning applied by OTSL to tune constraint-based CI tests might not 

be appropriate. 

Table 4 repeats the experiments but assumes Default B configurations, and that the tuning score 

is BDeuiss instead of EBICnormalised γ assumed in Table 3. In this case, the results show that both 

randomising and optimising the hyperparameter iss of BDeuiss worsens graphical scores relative to 

those obtained by assuming hyperparameter defaults. In other words, it seems that assuming iss = 1 for 

BDeuiss produces strong performance with little, if any, room for improvement via hyperparameter 

tuning, and this is consistent with what is reported by Steck (2008) and Uneo (2011) who recommend 

to set iss = 1, especially when the distributions of the variables are assumed to be skewed or when the 

true underlying structure is assumed to be sparse. Our results show that randomising the iss 

hyperparameter of BDeuiss worsens the F1 score by 4.86% and worsens the SHD score by 11.02%, 

whereas optimising iss with OTSL improves the F1 scores by 0.12% and worsens the SHD scores by 

3.36%. These results suggest that the BDeuiss function may not be suitable for tuning, at least compared 

to EBICnormalised γ, and that setting iss = 1 might indeed be sufficient, in general. 
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                                      (a)                                                                         (b)                                                         

Figure 3: The average F1 scores with and without hyperparameter tuning. Untuned algorithms assume Default B 

configuration and tuned algorithms assume OTSL with BDeuiss as the tuning score. The average scores are 

derived over five structure learning algorithms, and six synthetic case studies. The boxplots represent the highest 

and lowest F1 scores with outliers, × is the mean and ‒ is the median. The lower edge of the boxplot represents 

the first quartile, while the higher edge of the boxplot represents the third quartile. Figure (a) depicts the scores 

for datasets with sample size 1k, and (b) with sample size 10k. 
 

Algorithm 

Change in F1 relative to 

Default A 

Change in SHD relative to 

Default A 

Random 

configuration 

Tuning with 

EBICnormalised γ 
Random 

configuration 

Tuning with 

EBICnormalised γ 

PC-Stable 0.95% -1.18% -1.30% -1.08% 

HC 6.29% 12.96% 8.29% 23.40% 

FGES -14.21% -0.10% -26.31% 1.54% 

MMHC 0.00% 3.91% -0.43% 0.61% 

Average -1.71% 3.90% -4.89% 6.12% 

 

Table 3: The change in average F1 and SHD scores for each algorithm, after randomising their hyperparameters 

and after tuning them with OTSL. The average score is derived from all six synthetic case studies and both 1k and 

10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and γ = 0 for EBICγ (Default A). The 

values highlighted in green indicate an increase (improvement) in the F1 score or a decrease (improvement) in the 

SHD score, and the best performance values are shown in bold. 

 

Algorithm 

Change in F1 relative to 

Default B 

Change in SHD relative to 

Default B 

Random 

configuration 

Tuning with 

BDeuiss 

Random 

configuration 

Tuning with 

BDeuiss 

PC-Stable 0.78% 2.40% -2.00% 0.64% 

HC -10.48% -8.64% -18.95% -11.33% 

FGES -14.77% 2.25% -34.65% -9.68% 

MCMC 2.79% 2.51% 2.40% 3.25% 

MMHC -2.69% 2.06% -2.11% 0.31% 

Average -4.86% 0.12% -11.02% -3.36% 

 

Table 4: The change in average F1 and SHD scores for each algorithm, after randomising their hyperparameters 

and after tuning them with OTSL. The average score is derived from all six synthetic case studies and both 1k and 

10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and γ = 0 for BDeuiss (Default B). The 

values highlighted in green indicate an increase (improvement) in the F1 score or a decrease (improvement) in the 

SHD score, and the best performance values are shown in bold. 
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5.1.2. Assessing OTSL relative to existing tuning algorithms for structure learning 

We compare the results of OTSL with those obtained by the out-of-sample tuning OCT and the in-

sample tuning StARS. We also consider the baseline tuning results obtained by the model-selection 

scores BIC and AIC. This process involves applying the other four approaches to the same experiments 

presented in subsection 5.1.1, and comparing the changes to the F1 and SHD scores across all 

hyperparameter tuning approaches. 

Structure 

learning 

algorithm 

Hyperparameter tuning method 

Out-of-sample In-sample Out-of-sample In-sample 

OTSL with 
EBICnormalised γ 

tuning 

OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 

OTSL with 
EBICnormalised γ 

tuning 

OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 

Change of F1 relative to Default A Change of SHD relative to Default A 

PC-Stable -1.18% 1.88% 4.32% 3.30% 0.72% -1.08% 0.09% 1.21% 1.56% -0.25% 

HC 12.96% 6.23% -0.65% -1.60% -3.62% 23.40% -35.43% -8.76% -9.90% -34.77% 

FGES -0.10% 1.26% -6.87% -7.43% 1.55% 1.54% -0.67% -5.71% -7.37% -2.59% 

MMHC 3.91% 3.03% 11.55% 19.88% 3.36% 0.61% -4.89% 22.47% 23.08% 17.09% 

Average 3.90% 3.10% 2.09% 3.54% 0.50% 6.12% -10.22% 2.30% 1.84% -5.13% 

 

Table 5: The average change in F1 and SHD scores due to hyperparameter tuning by the specified tuning method. 

The averages are derived from all six synthetic case studies and over both sample sizes. The structure learning 

algorithms assume Default A hyperparameter configuration (Chi2 test with 𝛼 = 0.05, and EBICγ with γ = 0). The 

values highlighted in green indicate an increase (improvement) in the F1 score or a decrease (improvement) in the 

SHD score, and the highest improvements in graphical accuracy are shown in bold. 

 

Tables 5 and 6 summarise these results for both Default A and Default B hyperparameter 

configurations respectively. Table 5 shows that while none of the hyperparameter tuning approaches 

improves the graphical accuracy for all four structure learning algorithms, most of the approaches do 

improve the average structure learning performance across all algorithms. Specifically, all five tuning 

approaches improve the average F1 score across the four structure learning algorithms considered, 

although only three out of the five tuning approaches also improve the SHD score. The OTSL algorithm 

with EBICnormalised γ tuning improves the F1 (up by 3.9%) score and improves the SHD score (up by 

6.12%) scores the most across all the tuning approaches considered. Interestingly, the F1 and SHD 

scores provide contradictory conclusions about the impact on graphical structure for OCT and StARS 

algorithms, and this inconsistency between the F1 and SHD metrics is in agreement with other studies 

(Constantinou et al., 2021). For example, the F1 metric suggests that the hyperparameter tuning of OCT 

improves the structure learning performance of all four structure learning algorithms, whereas the SHD 

metric suggests that OCT worsens the graphical accuracy of three out of the four structure learning 

algorithms.  

Structure 

learning 

algorithm 

Hyperparameter tuning method 

Out-of-sample In-sample Out-of-sample In-sample 

OTSL 

with 
BDeuiss 
tuning 

OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 

OTSL 

with 
BDeuiss 
tuning 

OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 

Change of F1 relative to Default B Change of SHD relative to Default B 

PC-Stable 2.40% 1.26% -6.87% -7.43% 1.55% 0.64% -0.67% -5.71% -7.37% -2.59% 

HC -8.64% -11.25% -4.26% 1.88% -11.21% -11.33% -40.02% -2.57% -2.06% -11.15% 

FGES 2.25% -0.43% -6.02% -6.94% -7.91% -9.68% -41.77% -15.96% -17.17% -42.71% 

MCMC 2.51% -2.39% -0.93% 0.18% -0.15% 3.25% -10.80% -7.93% 1.97% -2.29% 

MMHC 2.06% -2.47% 0.41% -0.59% -3.56% 0.31% -1.65% -0.60% -0.28% -2.09% 

Average 0.12% -3.06% -3.53% -2.58% -4.26% -3.36% -18.98% -6.55% -4.98% -12.17% 
 

Table 6: The average change in F1 and SHD scores due to hyperparameter tuning by the specified tuning method. 

The averages are derived from all six synthetic case studies and over both sample sizes. The structure learning 

algorithms assume Default B hyperparameter configuration (Chi2 test with 𝛼 = 0.05, and BDeuiss with iss = 1). 

The values highlighted in green indicate an increase (improvement) in the F1 score or a decrease (improvement) 

in the SHD score, and the highest improvements in graphical accuracy are shown in bold. 
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Table 6 presents the same results when the hyperparameter tuning approaches are applied to the 

iss hyperparameter of BDeuiss. Overall, the results are consistent with those presented in Tables 3 and 

4, in that hyperparameter tuning appears to be successful for EBICnormalised γ but not for BDeuiss. 

While tuning with BDeuiss is found to be rather inadequate for all tuning methods, OTSL is found to 

perform considerably better compared to the other tuning approaches with an improvement of 0.12% in 

the average F1 score (improved the scores of four out of the five algorithms) and a worsening of 3.36% 

in the average SHD score (improved the scores of three out of the five algorithms).  

We also assess the computational complexity of OTSL by comparing its hyperparameter tuning 

and overall structure learning runtimes against those produced by the other hyperparameter tuning 

approaches. Provisional results show that the runtimes are similar for both EBICnormalisedγ and 

BDeuiss, but here we focus on EBICnormalised γ which produces the best tuning performance. Figure 4a 

depicts the total runtimes (hyperparameter tuning and structure learning) across all six case studies, two 

sample sizes, and five structure learning algorithms, whereas Figure 4b shows the runtime for the same 

experiments but restricted to the hyperparameter tuning phase. As expected, optimisation with model-

selection functions such as BIC and AIC results in very low runtimes, since they do not involve out-of-

sample or resampling strategies, whereas OTSL, OCT and StARS perform 10 iterations of either in-

sample or out-of-sample tuning for each hyperparameter configuration and hence, they produce 

considerably higher runtimes. Overall, the results in Figure 4a show that the computational runtime of 

OTSL is similar to that of StARS, and considerably faster than that of OCT. Importantly, the tuning 

runtimes of OTSL and StARS represent just 0.2% and 0.4% of the total structure learning runtime 

respectively, whereas the tuning runtime of OCT represents 43% of its total structure learning runtime. 

Figure 4b shows that the tuning runtime of OTSL is slower than the tuning runtime of StARS, but much 

faster than the tuning runtime of OCT. 

                                                

(a) (b)                                                         

Figure 4: (a) Overall runtime (structure learning and tuning) and (b) tuning runtime, summed over all six 

synthetic datasets and two sample sizes, across all five structure learning algorithms.  

5.2. Applying OTSL to real data  

While previous subsections focused on evaluating OSTL in terms of how its tuning improves the 

recovery of the ground truth graphs that were used to generate synthetic data, this subsection illustrates 

how OTSL could be used in practice with application to four different real datasets that come from 

different disciplines. As discussed in Section 3, real data do not come with an access to ground truth 

and hence, the purpose here is to illustrate how tuning influences the structure learning performance of 

the different algorithms considered when applied to real data. We consider the following four discrete 
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datasets, where the first three are obtained from the Bayesys repository (Constantinou et al., 2020) and 

the fourth from the National Center for Environmental Prediction (NCEP) and the National Center for 

Atmospheric Research (NCAR) in the USA, known as the NCEP/NCAR Reanalysis Project (Kalnay et 

al., 1996): 

a) ForMed: A case study on assessing and managing the risk of violence in released prisoners 

with history of violence and mental health (Coid et al., 2016; Constantinou et al., 2015). The 

data was collected through interviews and assessments comprising risk factors for 953 

individual cases. The dataset contains a total of 56 categorical variables. 
b) Covid-19: A dataset that captures pandemic data about the COVID-19 outbreak in the UK 

(Constantinou et al., 2023). The data comprises of 18 variables that capture information related 

to viral tests, infections, hospitalisations, vaccinations, deaths, COVID-19 variants, population 

mobility such as usage of transportation, schools, and restaurants, as well as various 

government policies such as facemasks and lockdowns. The data instances represent daily 

information, spanning from January 30th, 2020, to June 13th, 2022, resulting in a total of 866 

instances. 

c) Diarrhoea: Survey data collated and pre-processed from the Demographic and Health Survey 

(DHS) program, which was used to investigate the factors associated with childhood diarrhoea 

in India (Kitson and Constantinou, 2021). The dataset captures relevant cases from 2015 to 

2016 and contains 28 variables and 259,627 instances. 

d) Weather: A dataset that captures the monthly means of air temperature and other 

climatological data for each location as measured by latitude (y coordinate) and longitude (x 

coordinate) over the global grid system (Kalnay et al., 1996). The dataset merges information 

obtained from multiple sources, i.e., balloons, satellites, and buoys. It provides a comprehensive 

75-year record from 1948 to 2022 of global atmospheric field analyses. We used the bnlearn R 

package (2019) to discretise the dataset. Because the raw data is too big for our experiments, 

we also resized the spatial dataset from 2.5 degree x 2.5 degree global grids to 10 degree x 10 

degree global grids, and reduced the total number of variables from 10,512 (144x73) to 648 

(36x18). Therefore, the dataset used in this study contains a total of 648 variables and 900 

instances. 

We apply the structure learning algorithms to each of the four datasets, and tune their 

hyperparameters using OTSL. We only consider Default A hyperparameter configuration with 

EBICnormalised γ for tuning, which was shown to be more suitable for hyperparameter optimisation. 

Table 7 presents the results obtained by applying the specified structure learning algorithms to the 

ForMed dataset and tuning their hyperparameters with OTSL. We report the model-selection score BIC, 

the goodness-of-fit score LL, the number of free parameters as a measure of model dimensionality, and 

the tuning scores EBICnormalised γ. Table 7 shows that out of the four structure learning algorithms 

considered, only one (HC with γ = 2) had its hyperparameter changed following tuning with OTSL. 

The tuning scores EBICnormalised γ in Table 7 suggest that the graph produced by MMHC, presented in 

Figure 5, might be the ‘best’ structure to consider amongst those learnt by the different algorithms, 

although this suggestion contradicts the BIC score which suggests that the best structure may be the one 

learnt by HC.  

Tables 8, 9, and 10, and corresponding Figures 6, 7, and 8, repeat the above analyses for case 

studies Covid-19, Diarrhoea and Weather respectively. Note that only two algorithms are reported for 

the Weather case study, and this is because HC did not complete learning within the 24-hour time limit, 

while FGES returned a memory allocation error. The results show that OTSL modified the 

hyperparameters of three and four, out of the four, structure learning algorithms in Covid-19 and 

Diarrhoea cases respectively, and for one out of the two algorithms for dataset Weather. Table 8 shows 

that FGES produces the best structure for the Covid-19 case study (see Figure 6) according to both 
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EBICnormalised γ and BIC scores. On the other hand, the results in Table 9 suggest that the graph 

produced by FGES is the best structure according to EBICnormalised γ, which once more contradicts the 

BIC score that scores the graph produced by HC the highest. Lastly, in Table 10 both EBICnormalised γ 

and BIC are in agreement that MMHC produced the best structure shown in Figure 8. The nodes in 

Figure 8 represent random variables of a monthly temperature for each location, whereas the arcs 

represent the spatial dependencies of surface temperatures for each grid1.  

 

Structure 
learning 

algorithm 

CI test / Objective 
score 

Optimal 

hyperparameter 
from OTSL (Tuning 

with EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

 

Chi2  

𝛼 = 0.05 

 

-4,099 -40,791 -39,775 296 

MI -4,113 -40,799 -39,760 303 

Mi-sh -4,092 -40,837 -39,774 310 

HC EBICγ γ = 2 -3,974 -37,062 -35,442 540 

FGES EBICγ γ = 0 -4,195 -42,343 -41,846 145 

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05 / 𝛄 = 0 -3,942 -38,183 -37,744 439 

 

Table 7: The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt by the 

specified structure learning algorithms when applied to the ForMed dataset, with OTSL tuning. The best 

performance values are shown in bold. 

 

 

Structure 
learning 

algorithm 

CI test / Objective 

score 

Optimal 
hyperparameter 

from OTSL (Tuning 

with EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

Chi2 𝛼 = 0.1 -1,392 -13,666 -13,270 117 

MI 𝛼 = 0.1 -1,395 -13,768 -13,190 171 

Mi-sh 𝛼 = 0.01 -1,395 -13,768 -13,190 171 

HC EBICγ γ = 5 -1,249 -10,725 -8,787 323 

FGES 𝐄𝐁𝐈𝐂𝛄 𝛄 = 1 -1,092 -9,038 -9,918 260 

MMHC Chi2 /EBICγ 𝛼 = 0.05 / γ = 0 -1,257 -12,267 -12,129 138 

 

Table 8: The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt by the 

specified structure learning algorithms when applied to the COVID-19 dataset, with OTSL tuning. The best 

performance values are shown in bold. 

 

 
1 The orange arcs represent short-distance temperature dependencies, while the red arcs show the teleconnected 

dependencies. We observe that the local short-distance arcs are dense, representing atmospheric thermodynamic 

processes, while the teleconnected dependencies are represented by only three arcs. One of these teleconnected 

dependencies indicates the El Niño effects, which are caused by temperatures along the equator in the Pacific 

Ocean (Yamasaki et al., 2008). 
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Figure 5: The DAG learnt by MMHC for the ForMed dataset with OTSL tuning (Table 7). 

 

 

Figure 6: The DAG (sampled from the learnt CPDAG) learnt by FGES for the COVID-19 dataset with OTSL 

tuning (Table 8). 
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Structure 
learning 

algorithm 

CI test / Objective 

score 

Optimal 
hyperparameter 

from OTSL (Tuning 

with EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

Chi2 𝛼 = 0.01 -19,653 -4,910,813 -4,899,630 1,794 

MI 𝛼 = 0.1 -19,400 -5,099,129 -5,088,588 1,691 

Mi-sh 𝛼 = 0.01 -19,506 -5,082,642 -5,068,485 1,691 

HC EBICγ γ = 2 -19,257 -4,776,526 -4,748,359 9,389 

FGES 𝐄𝐁𝐈𝐂𝛄 𝛄 = 0 -19,175 -4,944,463 -4,941,340 501 

MMHC Chi2 / EBICγ 𝛼 = 0.01 / γ = 0 -19,257 -4,979,854 -4,979,334 520 
 

Table 9: The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt by the 

specified structure learning algorithms when applied to the Diarrhoea dataset, with OTSL tuning. The best 

performance values are shown in bold. 

 

Figure 7: The DAG (sampled from the learnt CPDAG) learnt by FGES for the Diarrhoea dataset with OTSL 

tuning (Table 9). 

Structure 
learning 

algorithm 

CI test / Objective 
score 

Optimal 

hyperparameter 
from OTSL (Tuning 

with EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-
Stable 

Chi2 𝛼 = 0.05 -67,594 -334,171 -319,219 4,396 

MI 𝛼 = 0.01 -72,525 -378,849 -366,591  3,604  

Mi-sh 𝛼 = 0.1 -71,653 -346,160 -333,059 3,852 

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05, 𝛄 = 0 -66,350 -318,220 -314,724 3,496 

 
Table 10: The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt by the 

specified structure learning algorithms when applied to the Weather dataset, with OTSL tuning. The best 

performance values are shown in bold. 
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Figure 8: The DAG learnt by MMHC for the Weather dataset with OTSL tuning (Table 10). The vertices of the 

world map superimposed over the DAG represent latitude and longitude locations on 10x10 degree grids.  

6. Conclusions and future work 

Learning causal models from observational data remains a major challenge. Traditionally, structure 

learning algorithms are evaluated and applied to real data with their hyperparameter defaults, or by 

iterating over a small set of possible hyperparameters. However, no specific set of hyperparameters is 

optimal for all input datasets which vary in sample size and dimensionality, and structure learning 

algorithms which vary in learning strategy. Therefore, the question of which hyperparameter values 

might be best for a given structure learning algorithm and input dataset combination remains an open 

question.  

In this study, we propose and evaluate a hyperparameter tuning algorithm, called OTSL, that 

employs out-of-sample resampling and score-based tuning to find the optimal hyperparameters for a 

given structure learning algorithm, given the input data. We describe and implement OTSL with a focus 

on score-based learning, and determine the hyperparameters of different algorithms by optimising either 

the iss or γ hyperparameters of BDeuiss and EBICnormalised γ objective scores.  

Synthetic experiments show that tuning with OTSL leads to reasonable improvements in structure 

learning in terms of the F1 and SHD scores, and when assuming EBICγ as the objective score for score-

based learning. However, this level of improvement is not repeated for BDeuiss, and this observation is 

consistent for OTSL and all the other tuning approaches investigated in this study. This is because the 

hyperparameter default of iss = 1 in BDeuiss tends to improve F1 and SHD scores compared to the 

graphs learnt when iss > 1 (and hence benefits little, if any, from hyperparameter tuning), and this 

observation is consistent with past studies (Steck, 2008; Uneo, 2011).  

The performance of OTSL’s tuning is assessed by comparing it to two baseline settings; default 

hyperparameters and randomised hyperparameters, and by comparing it to the state-of-the-art 

hyperparameter tuning approaches that are proposed for structure learning. We have considered the 

OCT and StARS tuning approaches, as well as the BIC and AIC model-selection scores that serve as 

baselines for tuning hyperparameters. Overall, the results show that OTSL provides better tuning 

performance from results derived across different structure learning algorithms, case studies, and 

sample sizes. In terms of computational complexity, OTSL was found to be more efficient than OCT 

but slightly less efficient than StARS. 



21 
 

 

We note that hyperparameter tuning does not always lead to improvements in causal discovery 

as measured by graphical scores, such as the F1 score. This phenomenon can be attributed to the fact 

that hyperparameter tuning optimises a specific score or objective function that estimates the underlying 

structure, and not the actual graphical scores which remain unknown in practice due to the absence of 

ground truth. As a result, a higher objective score does not necessarily imply a higher graphical score, 

leading to situations where optimal hyperparameters might decrease, instead of increase, graphical 

scores like F1. This observation is consistent with previous studies that highlight the effectiveness of 

default hyperparameters, which are designed to ensure broad applicability and balanced performance, 

thus making the algorithms robust across a variety of datasets. However, despite the strong baseline 

provided by default settings, hyperparameter tuning may be necessary to achieve optimal performance 

in certain specific scenarios or with unique datasets. 

A limitation is that while OTSL can be applied to structure learning algorithms that come from 

different classes of learning, it is designed with score-based learning in mind and assumes that the 

optimal hyperparameters are those that maximise either the EBICnormalised γ or BDeuiss objective 

scores, and this also applies when tuning CI functions in constraint-based learning. This might explain 

why the results from tuning score-based learning algorithms are better that those derived from tuning 

constraint-based learning. Another limitation is that, because OTSL optimises hyperparameters on test 

data, this process involves resampling multiple training and test datasets from a single input dataset, 

which impacts the computational efficiency of structure learning; a learning process that is already 

known to be computationally expensive. 
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