350 research outputs found
Low‐Temperature Heat Capacities and Thermodynamic Functions of Some Palladium and Platinum Group Chalcogenides. II. Dichalcogenides; PtS2, PtTe2, and PdTe2
Heat capacities of platinum disulfide, platinum ditelluride, and palladium ditelluride were measured in the range 5° to 350°K. They show the normal sigmoidal temperature dependence with no evidence of transitions or other anomalies. The derived heat capacity equations were integrated. Values of Cp, S°—S0°, H°—H0°, and —(F°—H0°)/T are tabulated for selected temperatures. At 298.15°K the entropies are 17.85 cal gfw—1 °K—1 for PtS2, 28.92 cal gfw—1 °K—1 for PtTe2 and 30.25 cal gfw—1 °K—1 for PdTe2. Thermodynamic values have been estimated for other dichalcogenides and related chalcogenides of the platinum group metals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69847/2/JCPSA6-35-5-1670-1.pd
Lars Vegard:key communicator and pioneer crystallographer
The Norwegian physicist Lars Vegard studied with William H. Bragg in Leeds and then with Wilhelm Wien in Würzburg. There, in 1912, he heard a lecture by Max Laue describing the first X-ray diffraction experiments and took accurate notes which he promptly sent to Bragg. Although now remembered mainly for his work on the physics of the aurora borealis, Vegard also did important pioneering work in three areas of crystallography. He derived chemical insight from a series of related crystal structures that he determined, Vegard's Law relates the unit-cell dimensions of mixed crystals to those of the pure components, and he determined some of the first crystal structures of gases solidified at cryogenic temperatures
Electronic, vibrational, and thermodynamic properties of ZnS (zincblende and rocksalt structure)
We have measured the specific heat of zincblende ZnS for several isotopic
compositions and over a broad temperature range (3 to 1100 K). We have compared
these results with calculations based on ab initio electronic band structures,
performed using both LDA and GGA exchange- correlation functionals. We have
compared the lattice dynamics obtained in this manner with experimental data
and have calculated the one-phonon and two-phonon densities of states. We have
also calculated mode Grueneisen parameters at a number of high symmetry points
of the Brillouin zone. The electronic part of our calculations has been used to
investigate the effect of the 3d core electrons of zinc on the spin-orbit
splitting of the top valence bands. The effect of these core electrons on the
band structure of the rock salt modification of ZnS is also discussed.Comment: 33pages, 16 Figures, submitted to Phys. Rev.
Peculiarities of phonon spectra and lattice heat capacity in Ir and Rh
A simple pseudopotential model is proposed, which allows the phonon spectra
and temperature dependence of the lattice heat capacity of Ir and Rh be
described with a high enough accuracy. A careful comparison of the calculated
and experimental values of the lattice heat capacity is carried out, with the
procedure of the identification of the phonon contribution to the heat capacity
and determination of the characteristics (momenta) of the phonon density of
states from the experimental values of the total heat capacity of metal at a
constant pressure being described in detail. The results of the theoretical
calculations explain, in particular, such peculiar feature of Ir and Rh,
unusual for cubic metals, as a sharp (more than by a factor of 1.5) decrease in
the effective Debye temperature with increasing termperature. The temperature
dependence of the mean square amplitude of atomic displacements in Ir and Rh
has been calculated. Basing on the band calculations the manifestation of the
Kohn singularities in the phonon spectra of Ir are discussed.Comment: 15 pages, LaTeX2e, 12 figures in postscrip
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
- …