59,124 research outputs found

    Performance Analysis of a Dual-Hop Cooperative Relay Network with Co-Channel Interference

    Get PDF
    This paper analyzes the performance of a dual-hop amplify-and-forward (AF) cooperative relay network in the presence of direct link between the source and destination and multiple co-channel interferences (CCIs) at the relay. Specifically, we derive the new analytical expressions for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR) and the average symbol error rate (ASER) of the relay network. Computer simulations are given to confirm the validity of the analytical results and show the effects of direct link and interference on the considered AF relay network

    Modelling Electron Spin Accumulation in a Metallic Nanoparticle

    Full text link
    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin-relaxation, the model leads to a spin-accumulation in the nanoparticle, a difference (Δμ\Delta\mu) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere's tunnel magnetoresistance. Taking into account an energy dependent spin-relaxation rate Ω(ω)\Omega (\omega), Δμ\Delta\mu as a function of bias voltage (VV) exhibits a crossover from linear to a much weaker dependence, when eΩ(Δμ)|e|\Omega (\Delta\mu) equals the spin-polarized current through the nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon emission and Elliot-Yafet mechanism, the model leads to a crossover from linear to V1/5V^{1/5} dependence. The crossover explains recent measurements of the saturation of the spin-polarized current with VV in Aluminum nanoparticles, and leads to the spin-relaxation rate of 1.6MHz\approx 1.6 MHz in an Aluminum nanoparticle of diameter 6nm6nm, for a transition with an energy difference of one level spacing.Comment: 37 pages, 7 figure

    Charmed Baryon Weak Decays with SU(3) Flavor Symmetry

    Full text link
    We study the semileptonic and non-leptonic charmed baryon decays with SU(3)SU(3) flavor symmetry, where the charmed baryons can be Bc=(Ξc0,Ξc+,Λc+){\bf B}_{c}=(\Xi_c^0,\Xi_c^+,\Lambda_c^+), Bc=(Σc(++,+,0),Ξc(+,0),Ωc0){\bf B}'_{c}=(\Sigma_c^{(++,+,0)},\Xi_{c}^{\prime(+,0)},\Omega_c^0), Bcc=(Ξcc++,Ξcc+,Ωcc+){\bf B}_{cc}=(\Xi_{cc}^{++},\Xi_{cc}^+,\Omega_{cc}^+), or Bccc=Ωccc++{\bf B}_{ccc}=\Omega^{++}_{ccc}. With Bn(){\bf B}_n^{(\prime)} denoted as the baryon octet (decuplet), we find that the BcBn+ν{\bf B}_{c}\to {\bf B}'_n\ell^+\nu_\ell decays are forbidden, while the Ωc0Ω+ν\Omega_c^0\to \Omega^-\ell^+\nu_\ell, Ωcc+Ωc0+ν\Omega_{cc}^+\to\Omega_c^0\ell^+\nu_\ell, and Ωccc++Ωcc++ν\Omega_{ccc}^{++}\to \Omega_{cc}^+\ell^+\nu_\ell decays are the only existing Cabibbo-allowed modes for BcBn+ν{\bf B}'_{c}\to {\bf B}'_n\ell^+\nu_\ell, BccBc+ν{\bf B}_{cc}\to {\bf B}'_c\ell^+\nu_\ell, and BcccBcc()+ν{\bf B}_{ccc}\to {\bf B}_{cc}^{(\prime)}\ell^+\nu_\ell, respectively. We predict the rarely studied BcBn()M{\bf B}_{c}\to {\bf B}_n^{(\prime)}M decays, such as B(Ξc0Λ0Kˉ0,Ξc+Ξ0π+)=(8.3±0.9,8.0±4.1)×103{\cal B}(\Xi_c^0\to\Lambda^0\bar K^0,\,\Xi_c^+\to\Xi^0\pi^+)=(8.3\pm 0.9,8.0\pm 4.1)\times 10^{-3} and B(Λc+Δ++π,Ξc0ΩK+)=(5.5±1.3,4.8±0.5)×103{\cal B}(\Lambda_c^+\to \Delta^{++}\pi^-,\,\Xi_c^0\to\Omega^- K^+)=(5.5\pm 1.3,4.8\pm 0.5)\times 10^{-3}. For the observation, the doubly and triply charmed baryon decays of Ωcc+Ξc+Kˉ0\Omega_{cc}^{+}\to \Xi_c^+\bar K^0, Ξcc++(Ξc+π+\Xi_{cc}^{++}\to (\Xi_c^+\pi^+, Σc++Kˉ0)\Sigma_c^{++}\bar K^0), and Ωccc++(Ξcc++Kˉ0,Ωcc+π+,Ξc+D+)\Omega_{ccc}^{++}\to (\Xi_{cc}^{++}\bar K^0,\Omega_{cc}^+\pi^+,\Xi_c^+ D^+) are the favored Cabibbo-allowed decays, which are accessible to the BESIII and LHCb experiments.Comment: 29 pages, no figure, a typo in the table correcte

    Transverse momentum broadening of vector boson production in high energy nuclear collisions

    Full text link
    We calculate in perturbative QCD the transverse momentum broadening of vector boson production in high energy nuclear collisions. We evaluate the effect of initial-state parton multiple scattering for the production of the Drell-Yan virtual photon and W/ZW/Z bosons. We calculate both the initial- and final-state multiple scattering effect for the production of heavy quarkonia and their transverse momentum broadening in both NRQCD and Color Evaporation model of quarkonium formation. We find that J/ψ\psi and Υ\Upsilon broadening in hadron-nucleus collision is close to 2CA/CF2C_A/C_F times the corresponding Drell-Yan broadening, which gives a good description of existing Fermilab data. Our calculations are also consistent with RHIC data on J/ψ\psi broadening in relativistic heavy ion collisions. We predict the transverse momentum broadening of vector boson (J/ψ\psi, Υ\Upsilon, and W/ZW/Z) production in relativistic heavy ion collisions at the LHC, and discuss the role of the vector boson broadening in diagnosing medium properties.Comment: 22 pages, 10 figures, revised version to appear in Phys. Rev.
    corecore