19 research outputs found

    Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Get PDF
    Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system

    CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption

    Get PDF
    The primary human immunodeficiency virus (HIV) reservoir is composed of resting memory CD4+ T cells, which often express the immune checkpoint receptors programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which limit T cell activation via synergistic mechanisms. Using simian immunodeficiency virus (SIV)-infected, long-term antiretroviral therapy (ART)-treated rhesus macaques, we demonstrate that PD-1, CTLA-4 and dual CTLA-4/PD-1 immune checkpoint blockade using monoclonal antibodies is well tolerated, with evidence of bioactivity in blood and lymph nodes. Dual blockade was remarkably more effective than PD-1 blockade alone in enhancing T cell cycling and differentiation, expanding effector-memory T cells and inducing robust viral reactivation in plasma and peripheral blood mononuclear cells. In lymph nodes, dual CTLA-4/PD-1 blockade, but not PD-1 alone, decreased the total and intact SIV-DNA in CD4+ T cells, and SIV-DNA and SIV-RNA in B cell follicles, a major site of viral persistence during ART. None of the tested interventions enhanced SIV-specific CD8+ T cell responses during ART or viral control after ART interruption. Thus, despite CTLA-4/PD-1 blockade inducing robust latency reversal and reducing total levels of integrated virus, the degree of reservoir clearance was still insufficient to achieve viral control. These results suggest that immune checkpoint blockade regimens targeting PD-1 and/or CTLA-4, if performed in people living with HIV with sustained aviremia, are unlikely to induce HIV remission in the absence of additional interventions

    Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    Get PDF
    Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activatio

    Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells

    Get PDF
    Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection

    The human IL-15 superagonist N-803 promotes migration of virus-specific CD8+ T and NK cells to B cell follicles but does not reverse latency in ART-suppressed, SHIV-infected macaques.

    No full text
    Despite the success of antiretroviral therapy (ART) to halt viral replication and slow disease progression, this treatment is not curative and there remains an urgent need to develop approaches to clear the latent HIV reservoir. The human IL-15 superagonist N-803 (formerly ALT-803) is a promising anti-cancer biologic with potent immunostimulatory properties that has been extended into the field of HIV as a potential "shock and kill" therapeutic for HIV cure. However, the ability of N-803 to reactivate latent virus and modulate anti-viral immunity in vivo under the cover of ART remains undefined. Here, we show that in ART-suppressed, simian-human immunodeficiency virus (SHIV)SF162P3-infected rhesus macaques, subcutaneous administration of N-803 activates and mobilizes both NK cells and SHIV-specific CD8+ T cells from the peripheral blood to lymph node B cell follicles, a sanctuary site for latent virus that normally excludes such effector cells. We observed minimal activation of memory CD4+ T cells and no increase in viral RNA content in lymph node resident CD4+ T cells post N-803 administration. Accordingly, we found no difference in the number or magnitude of plasma viremia timepoints between treated and untreated animals during the N-803 administration period, and no difference in the size of the viral DNA cell-associated reservoir post N-803 treatment. These results substantiate N-803 as a potent immunotherapeutic candidate capable of activating and directing effector CD8+ T and NK cells to the B cell follicle during full ART suppression, and suggest N-803 must be paired with a bona fide latency reversing agent in vivo to facilitate immune-mediated modulation of the latent viral reservoir

    Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques.

    No full text
    Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model

    TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes

    Get PDF
    Background: TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes. Methods: Participants receivedMGN1703 for 24weeks concurrentwith antiretroviral therapy. Seven participants completed the sub-study including lymph node resection at baseline and after 24weeks of treatment. A variety of tissue-based immunologic and virologic parameters were assessed. Findings: MGN1703 dosing increased B cell differentiation; activated pDCs, NK cells, and T cells; and induced a robust interferon response in lymph nodes. Expression of Activation-Induced cytidine Deaminase, an essential regulator of B cell diversification and somatic hypermutation, was highly elevated. During MGN1703 treatment IgG production increased and antibody glycosylation patterns were changed. Interpretation: Our data present novel evidence that the TLR9 agonist MGN 1703 modulates human lymph node B cells in vivo. These findingswarrant further considerations in the development of TLR9 agonists as immunotherapy against cancers and infectious diseases. (C) 2019 The Authors. Published by Elsevier B.V
    corecore