1,727 research outputs found

    BARSOP country report: The Netherlands

    Get PDF

    Daris, a low-frequency distributed aperture array for radio astronomy in space

    Get PDF
    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The astronomical science cases include sensitive extragalactic surveys, radio transients such as Jupiter-like burst and Crab-like pulses, and coronal mass ejection tracking. The focus of the DARIS concept study is on feasibility aspects of a distributed aperture synthesis array in space, consisting of small satellite nodes and a mother-ship. The study selected suitable science cases, antenna concepts, communications, signal processing, orbital design, and mission analysis. With current-day technologies a satellite cluster can be built consisting of at least eight satellite nodes and a mother-ship, which could be launched with a Soyuz rocket from Kourou. Such a satellite cluster would open up the last unexplored frequency range for astronomy

    Mirror effect induced by the dilaton field on the Hawking radiation

    Full text link
    We discuss the string creation in the near-extremal NS1 black string solution. The string creation is described by an effective field equation derived from a fundamental string action coupled to the dilaton field in a conformally invariant manner. In the non-critical string model the dilaton field causes a timelike mirror surface outside the horizon when the size of the black string is comparable to the Planck scale. Since the fundamental strings are reflected by the mirror surface, the negative energy flux does not propagate across the surface. This means that the evaporation stops just before the naked singularity of the extremal black string appears even though the surface gravity is non-zero in the extremal limit.Comment: 15 page

    Estimating the Quality of Electroconvulsive Therapy Induced Seizures Using Decision Tree and Fuzzy Inference System Classifiers

    Full text link
    Electroconvulsive therapy (ECT) is an effective and widely used treatment for major depressive disorder, in which a brief electric current is passed through the brain to trigger a brief seizure. This study aims to identify seizure quality rating by utilizing a set of seizure parameters. We used 750 ECT EEG recordings in this experiment. Four seizure related parameters, (time of slowing, regularity, stereotypy and post-ictal suppression) are used as inputs to two classifiers, decision tree and fuzzy inference system (FIS), to predict seizure quality ratings. The two classifiers produced encouraging results with error rate of 0.31 and 0.25 for FIS and decision tree, respectively. The classification results show that the four seizure parameters provide relevant information about the rating of seizure quality. Automatic scoring of seizure quality may be beneficial to clinicians working in this field

    Generalized Conformal Quantum Mechanics of D0-brane

    Get PDF
    We study the generalized conformal quantum mechanics of the probe D0-brane in the near horizon background of the bound state of source D0-branes. We elaborate on the relationship of such model to the M theory in the light cone frame.Comment: 14 pages, RevTeX, revised version with added references to appear in Phys. Rev.

    The holographic RG flow in a field theory on a curved background

    Get PDF
    As shown by Freedman, Gubser, Pilch and Warner, the RG flow in N=4{\cal N}=4 super-Yang-Mills theory broken to an N=1{\cal N}=1 theory by the addition of a mass term can be described in terms of a supersymmetric domain wall solution in five-dimensional N=8{\cal N}=8 gauged supergravity. The FGPW flow is an example of a holographic RG flow in a field theory on a flat background. Here we put the field theory studied by Freedman, Gubser, Pilch and Warner on a curved AdS4AdS_4 background, and we construct the supersymmetric domain wall solution which describes the RG flow in this field theory. This solution is a curved (non Ricci flat) domain wall solution. This example demonstrates that holographic RG flows in supersymmetric field theories on a curved AdS4AdS_4 background can be described in terms of curved supersymmetric domain wall solutions.Comment: 14 pages, LaTe

    DARIS : a low-frequency distributed aperture array for radio astronomy in space

    Get PDF
    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, space research such as space weather tomography, are also areas of scientific interest. \ud \ud Due to ionospheric scintillation (below 30MHz) and its opaqueness (below 15MHz), earth-bound radio astronomy observations in these bands are either severely limited in sensitivity and spatial resolution or entirely impossible. A radio telescope in space obviously would not be hampered by the Earth's ionosphere. In the past, several (limited) studies have been conducted to explore possibilities for such an array in space. These studies considered aperture synthesis arrays in space, at the back-side of the Moon, or a satellite constellation operating in a coherent mode. \u
    • …
    corecore