5,415 research outputs found

    Modeling Neutrino and Electron Scattering Cross Sections in the Few GeV Region with Effective LOPDFsLO PDFs

    Get PDF
    We use new scaling variables xwx_w and ξw\xi_w, and add low Q2Q^2 modifications to GRV94 and GRV98 leading order parton distribution functions such that they can be used to model electron, muon and neutrino inelastic scattering cross sections (and also photoproduction) at both very low and high energie.Comment: 8 pages, 3 figures, Invited talk given by Arie Bodek at the X Mexican School of Particles and Fields, Playa del Carmen, Mexico, 200

    Extraction of Neutrino Flux with the Low ν\nu Method at MiniBooNE Energies

    Full text link
    We describe the application of the `low-ν\nu' method to the extraction of the neutrino flux at MiniBooNE energies. As an example, we extract the relative energy dependence of the flux from published MiniBooNE quasielastic scattering cross sections with ν<0.2\nu < 0.2 GeV and ν<0.1\nu < 0.1 GeV (here ν\nu is the energy transfer to the target). We find that the flux extracted from the `low-ν\nu' cross sections is consistent with the nominal flux used by MiniBooNE. We fit the MiniBooNE cross sections over the entire kinematic range to various parametrizations of the axial form factor. We find that if the overall normalization of the fit is allowed to float within the normalization errors, the extracted values of the axial vector mass are independent of the flux. Within the Fermi gas model, the Q2Q^2 distribution of the MiniBooNE data is described by a standard dipole form factor with MA=1.41±0.04M_A=1.41\pm0.04 GeV. If nuclear transverse enhancement in the vector form factors is accounted for, the data are best fit with a modified dipole form factor with MA=1.10±0.03M_A=1.10\pm 0.03 GeV.Comment: 5 pages, 6 figures, (presented by A. Bodek at CIPANP 2012, St. Petersburg, FL, June 2012, and at NuFact 2012, Williamsburg, VA, July 2012

    Ambiguities of neutrino(antineutrino) scattering on the nucleon due to the uncertainties of relevant strangeness form factors

    Full text link
    Strange quark contributions to neutrino(antineutrino) scattering are investigated on the nucleon level in the quasi-elastic region. The incident energy range between 500 MeV and 1.0 GeV is used for the scattering. All of the physical observable by the scattering are investigated within available experimental and theoretical results for the strangeness form factors of the nucleon. In specific, a newly combined data of parity violating electron scattering and neutrino scattering is exploited. Feasible quantities to be explored for the strangeness contents are discussed for the application to neutrino-nucleus scattering.Comment: 17 pages, 7 figures, submit to J. Phys.

    Higher Twist, ξw\xi_w Scaling, and Effective LOPDFsLO PDFs for Lepton Scattering in the Few GeV Region

    Full text link
    We use a new scaling variable ξw\xi_w, and add low Q2Q^2 modifications to GRV98 leading order parton distribution functions such that they can be used to model electron, muon and neutrino inelastic scattering cross sections (and also photoproduction) at both very low and high energies.Comment: 6 pages, 3 figures. To be published in J. Phys. G (Conf. Proceedings) based on two talks by Arie Bodek at the NuFact02'02 conference, Imperial College, London, England, July 200

    Polarization effects in tau production by neutrino

    Full text link
    We studied polarization effects in tau production by neutrino-nucleon scattering. Quasi-elastic scattering, DeltaDelta resonance production and deep inelastic scattering processes are taken into account for the CERN-to-Gran Sasso projects. We show that the tau produced by neutrino has high degree of polarization, and its spin direction depends non-trivially on the energy and the scattering angle of tau in the laboratory frame.Comment: 6 pages, 5 eps figures, espcrc2.sty; Proceedings of the 3rd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), March 17-21, 2004, Gran Sasso, Italy; minor changes, typos in Eq. (6) correcte

    Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    Full text link
    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences, Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure

    Measurement of Transverse Polarization of Electrons Emitted in Free Neutron Decay

    Full text link
    The final analysis of the experiment determining both components of the transverse polarization of electrons (σT1\sigma_{T_{1}}, σT2\sigma_{T_{2}}) emitted in the β\beta-decay of polarized, free neutrons is presented. The T-odd, P-odd correlation coefficient quantifying σT2\sigma_{T_{2}}, perpendicular to the neutron polarization and electron momentum, was found to be R=R= 0.004±0.012±\pm0.012\pm0.005. This value is consistent with time reversal invariance, and significantly improves both earlier result and limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with σT1\sigma_{T_{1}}, N=N= 0.067±0.011±\pm0.011\pm0.004, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup. The present result sets constraints on the imaginary part of scalar and tensor couplings in weak interaction. Implications for parameters of the leptoquark exchange model and minimal supersymmetric model (MSSM) with R-parity violation are discussed
    corecore