1,696 research outputs found

    Moment distributiuons of clusters and molecules in the adiabatic rotor model

    Full text link
    We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor.Comment: 3 pages with 2 figure

    Optical response of small carbon clusters

    Get PDF
    We apply the time-dependent local density approximation (TDLDA) to calculate dipole excitations in small carbon clusters. A strong low-frequency mode is found which agrees well with observation for clusters C_n with n in the range 7-15. The size dependence of the mode may be understood simply as the classical resonance of electrons in a conducting needle. For a ring geometry, the lowest collective mode occurs at about twice the frequency of the collective mode in the linear chain, and this may also be understood in simple terms.Comment: 19 pages, Latex(Revtex), and 7 figures Postscript; to be published in Zeit. Phys. D; contact is [email protected]

    Time-Dependent Local Density Approximation for Collective Excitations of Atomic Clusters

    Get PDF
    We discuss the calculation of collective excitations in atomic clusters using the time-dependent local density approximation. In principle there are many formulations of the TDLDA, but we have found that a particularly efficient method for large clusters is to use a coordinate space mesh and the algorithms for the operators and the evolution equations that had been developed for the nuclear time-dependent Hartree-Fock theory. The TDLDA works remarkably well to describe the strong excitations in alkali metal clusters and in carbon clusters. We show as an example the benzene molecule, which has two strong features in its spectrum. The systematics of the linear carbon chains is well reproduced, and may be understood in rather simple terms.Comment: 12 pages in Postscrip

    Application of time-dependent density-functional theory to electron-ion couplng in ethylene

    Get PDF
    To examine the applicability of the time-dependent density-functional theory (TDDFT) for treating the electron-nucleus coupling in excited states, we calculate the strength distribution associated with the pi-pi* transition in ethylene. The observed optical transition strength at 7-8.5 eV region shows a complex structure arising from coupling to C-C stretch motion, to torsional motion, and to Rydberg excitations. The mean energy of the observed peak is reproduced to about 0.2 eV accuracy by the TDDFT in the local density approximation (LDA). The reflection approximation is used to calculate the peak broadening. Roughly half of the broadening can be attributed to the fluctuation in the C-C coordinate. The asymmetry in the line shape is also qualitatively reproduced by the C-C coordinate fluctuation. We find, in agreement with other theoretical studies, that the torsional motion is responsible for the progression of weak transition strength extending from the peak down to about 6 eV. The LDA reproduces the strength in this region to about factor of 3. We conclude that the TDDFT is rather promising for calculating the electron nucleus coupling at short times.Comment: 14 pages and 4 figures: an error is corrected in Table

    Nuclear Breakup of Borromean Nuclei

    Get PDF
    We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using Li11 and He6 as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s- and p-wave in the Li11 halo.Comment: 34 pages REVTeX, 14 postscript figures. Small changes in comparison with experimen

    Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/fuel cell powerplant subsystem FMEA/CIL

    Get PDF
    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware

    Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    Get PDF
    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode
    corecore