20 research outputs found
Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors
Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs. Constitutive overexpression of either of these genes is likely to be undesirable, but the transient nature of IdLVs reduces this risk and those associated with unsolicited gene expression in daughter cells. Transient expression led to increased multilineage hematopoietic engraftment in in vivo competitive repopulation assays without the side effects reported in constitutive overexpression models. Adult stem cell fate has not been programmed previously using IdLVs, but we demonstrate that these transient gene expression tools can produce clinically relevant alterations or be applied to investigate basic biology
Nuclear entrapment of BCR-ABL by combining imatinib mesylate with leptomycin B does not eliminate CD34<sup>+</sup> chronic myeloid leukaemia cells
No abstract available
Normalization of previously shortened telomere length under treatment with imatinib argues against a preexisting telomere length deficit in normal hematopoietic stem cells from patients with chronic myeloid leukemia
Telomeres are composed of TTAGGG repeats and associated proteins. In somatic cells, telomere repeats are lost with each cell division, eventually leading to genetic instability and cellular senescence. In previous studies, we described substantial and disease stage-specific telomere shortening in peripheral blood (PB) leukocytes from patients with chronic myeloid leukemia (CML). Here, we sought to determine whether age-adjusted telomere length in PB granulocytes (deltaTEL(gran)) is associated with response to treatment with the selective tyrosine kinase inhibitor imatinib. A total of 517 samples from 206 patients in chronic phase (CP), accelerated phase (AP), and blast crisis (BC) before and up to 706 days after initiation of imatinib therapy (median: 144 days) were analyzed by quantitative fluorescence in situ hybridization of interphase cells in suspension (Flow-FISH); telomere fluorescence was expressed in molecular equivalents of soluble fluorochrome units (MESF). Telomere length in samples from start of treatment up to day 144 was significantly shorter (mean +/- SE; -1.5 +/- 0.3 kMESF) compared to samples from patients treated for more than 144 days (-0.8 +/- 0.3 kMESF, p = 0.035). In patients with repeated measurements, a significant increase in telomere length under treatment was observed. Median telomere length in major remission was found to be significantly longer compared to patients without response to treatment measured either by cytogenetics (n = 246, p < 0.05), interphase FISH (n = 204, p = 0.002), or quantitative RT-PCR (n = 371, p < 0.05). In conclusion, the increase in telomere length under treatment with imatinib reflects a shift from Ph+ to Ph- cells in the PB of patients with CML
Imatinib and Nilotinib Inhibit Hematopoietic Progenitor Cell Growth, but Do Not Prevent Adhesion, Migration and Engraftment of Human Cord Blood CD34+ Cells
Background: The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to inhibit the tyrosine kinase of the stem cell factor receptor, c-Kit. Nilotinib is 30 times more potent than imatinib towards BCR-ABL in vitro. Studies in healthy volunteers and patients with chronic myelogenous leukemia or gastrointestinal stromal tumors have shown that therapeutic doses of nilotinib deliver drug levels similar to those of imatinib. The aim of this study was to compare the inhibitory effects of imatinib and nilotinib on proliferation, differentiation, adhesion, migration and engraftment capacities of human cord blood CD34+ cells. Design and Methods: After a 48-hour cell culture with or without TKIs, CFC, LTC-IC, migration, adhesion and cell cycle analysis were performed. In a second time, the impact of these TKIs on engraftment was assessed in a xenotransplantation model using NOD/SCID/IL-2Rc (null) mice.
Results: TKIs did not affect LTC-IC frequencies despite in vitro inhibition of CFC formation due to inhibition of CD34+ cell cycle entry. Adhesion of CD34+ cells to retronectin was reduced in the presence of either imatinib or nilotinib but only at high concentrations. Migration through a SDF-1a gradient was not changed by cell culture in the presence of TKIs. Finally, bone marrow cellularity and human chimerism were not affected by daily doses of imatinib and nilotinib in a xenogenic transplantation model. No significant difference was seen between TKIs given the equivalent affinity of imatinib and nilotinib for KIT.
Conclusions: These data suggest that combining non-myeloablative conditioning regimen with TKIs starting the day of the transplantation could be safe