280 research outputs found

    Spontaneous rotating vortex rings in a parametrically driven polariton fluid

    Full text link
    We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.Comment: 6 pages, 4 figure

    Dynamics of individual Brownian rods in a microchannel flow

    Full text link
    We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.Comment: 5 pages, 4 figure

    Biopolymer dynamics driven by helical flagella

    Get PDF
    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inwards while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyse the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.Comment: 14 pages, 6 figure

    Chlamydophila (Chlamydia) pneumoniae promotes Ab 1-42 amyloid processing in Neuronal Cells: A Pathogenic Trigger for Alzheimer\u27s Disease

    Get PDF
    Background: Previously, our laboratory identified Chlamydophila (Chlamydia) pneumoniae (Cpn) in autopsied sporadic AD brains. Furthermore, we have developed a BALB/c mouse model that demonstrated infection-induced amyloid plaques similar to those found in AD, and demonstrated that Cpn infection of neuronal cells inhibited apoptotic pathways of cell death. Hypothesis: Our current studies address whether infection with Cpn in neuronal cells triggers abnormal cleavage of the beta amyloid precursor protein (bAPP) into Ab1-42, thereby contributing to amyloid plaque formation characteristic of the pathology identified in AD. Materials and Methods: Human neuroblastoma cells were infected with the respiratory strain AR39 Cpn in vitro, then amyloid processing was analyzed and quantitated using immunocytochemistry, Western blotting and ELISA assays. Results: Cpn was shown to infect neuronal cells and induce intracellular amyloid processing. Cpn infection yielded cytoplasmic labeling of Ab 1-42 that was increased relative to uninfected cells. The ELISA assay revealed that in neuronal cell lysates, Ab 1-42 in the infected cells was increased 3 to 16-fold over the uninfected cells, from 24 to 72hr post infection. Western blot analysis confirmed an increase in Ab 1-42 in the infected neuronal cell lysates. Conclusions: These data suggest that infection of neuronal cells with Chlamydophila (Chlamydia) pneumoniae alters the processing of bAPP, thereby producing Ab1-42. Therefore, these studies and previous research reported by our laboratory support the implication of Cpn as a pathogenic agent in perpetuating the hallmark amyloid plaque formations observed in AD. This concept holds major therapeutic considerations for future studies.https://digitalcommons.pcom.edu/posters/1004/thumbnail.jp

    Autophagy and apoptotic genes implicated in Alzheimer’s disease are modulated following infection of neuronal cells with Chlamydia pneumoniae

    Get PDF
    Background: The focus of the current studies was to determine the relationship between the molecular mechanisms interconnecting autophagy and apoptosis following Chlamydia pneumoniae infection in neuronal cells. Dysfunctions in apoptosis and autophagy have been implicated in the neurodegeneration associated with Alzheimer’s disease (AD). Autophagy in AD pathogenesis has been shown to play a role in amyloid processing through the endosomal-lysosomal system. Apoptosis may contribute to the neuronal cell loss observed in AD; however, there is limited evidence of the apoptotic process proceeding to terminal completion. Although Aβ1-42 has been shown to induce apoptosis in neurons and may be an early factor in AD, our previous investigations demonstrated that neurons infected with Chlamydia pneumoniae are resistant to apoptosis, and that Aβ1-42 is induced following this infection. Thus, these studies address infection as an initiator/trigger or inhibitor for the processes of autophagy and apoptosis observed in Alzheimer’s disease. Methods: SKNMC neuronal cells obtained from ATCC were infected with the AR39 strain of Chlamydia pneumoniae at an MOI=1 for 24, 48, and 72hrs and were analyzed using Real-time PCR arrays from SABiosciences specific for autophagy and apoptosis genetic markers. Results: Some major genes associated with apoptosis such as BID, DAPK1, TP53, TP73 were down regulated by 72hrs post-infection. Genes associated with the regulation of autophagic vacuole formation such as ATG3, ATG4B, ATG4C, ATG9A, ATG9B, ATG12, IRGM, and BECN1 were up-regulated within 72hrs post-infection. With regards to genes involved with co-regulation of autophagy and apoptosis, BNIP3 was significantly up-regulated within 48-72hrs post-infection. Of the genes linking autophagosomes to lysosomes, FAM176A was up-regulated throughout 24-72hrs post-infection. Conclusions: Modulation of autophagy and apoptosis genes occurs in neuronal cells at 24, 48, and 72hrs post- infection with Chlamydia pneumoniae. These genetic changes lead to dysfunction in these basic cellular processes; dysfunction in these processes has been shown to contribute to the neuropathology of late-onset Alzheimer’s disease. This work will allow future studies to further focus on the apoptotic and autophagic pathways to better understand how a pathogen such as Chlamydia pneumoniae plays a role in the development of late-onset Alzheimer’s disease.https://digitalcommons.pcom.edu/posters/1009/thumbnail.jp

    2-Chloro-7-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-one

    Get PDF
    In the title compound, C23H15ClN2O, the fused ring system is planar: the deviation of all the non-H atoms from the plane through all four fused rings is less than 0.31 Å. The plane of the phenyl ring is inclined at 71.78 (5)° to the mean plane of the 1,8-naphthrydine ring system. The crystal structure is devoid of any classical hydrogen bonds but π–π inter­actions are present

    Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State

    Full text link
    A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the dd\mu muonic molecule was performed using the experimental \mu CF installation TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled with deuterium at temperatures from 85 K to 800 K was exposed to the negative muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq 2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc

    Oxygen modulates growth of human cells at physiologic partial pressures.

    Full text link

    ASSESSMENT OF SURVIVAL OF ZYGOMATIC IMPLANTS AND ROOT DENTAL IMPLANTS

    Get PDF
    Currently, dental implantation has taken a leading position in the complex treatment of various dental diseases as the main and the most progressive method of restoring the quality of life of patients. Work is devoted to studying of implants survival at 29 patients of specialized unit of multi-speciality hospital. 68 zygomatic implants and 137 root dental implants were set up to these patients. Implants were set up to get stomatologic rehabilitation of patients with the acquired adentia of jaws. The comparative assessment of survival of zygomatic and dental implants was carried out, the period of observation was 36 months. The assessment of survival of root dental implants at all patients operated for the reporting period of time was carried also out
    corecore