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Microbial flagellates typically inhabit complex suspensions of polymeric material which
can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the
generation of biofilms. There is currently a need to better understand how the fundamental
dynamics of polymers near active cells or flagella impacts these various phenomena, in
particular, the hydrodynamic and steric influence of a rotating helical filament on suspended
polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix
pumps fluid along its long axis, polymers migrate radially inward while being elongated.
We observe that the actuation of the helix tends to increase the probability of finding
polymeric material within its pervaded volume. This accumulation of polymers within the
vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work
performed by the helix on the polymers and show that this quantity is positive on average
and increases with polymer contour length.
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I. INTRODUCTION22

While the physics of swimming microbes in Newtonian viscous fluids has been well characterized,23

attention has recently turned toward understanding how active microorganisms behave in more24

biologically relevant media where the presence of large biopolymers, elastic filaments, or exopolymer25

secretions can dictate dynamics. In such complex fluids, motility enhancement [1–6] and retardation26

[3,4,7–11] have both been reported for various biological swimmers. Theoretical studies exploring27

swimming in continuous viscoelastic media yield model- or parameter-dependent results [3–5].28

Invariably, these studies concentrate on continuum models of viscoelasticity, and as such cannot29

provide a full insight into the specific microscopic mechanisms of interaction between single30

polymers and the flagella of the swimmers.31

Swimming dynamics may indeed be affected by such interactions due in part to the comparatively32

similar length and time scales of cells and biopolymeric material in vivo. One hypothesis that has33

been applied to the swimming of E. coli in dilute polymer solutions is that a time-scale separation34

between the fast rotation of the bacterial flagellum and slow relaxation of the polymers effectively35

depletes the flagellum’s local environment of polymeric material as it clears its surrounding volume36

[12]. Hence, the flagellum experiences an effective viscosity that can be markedly different from37

that perceived by the more slowly counter-rotating cell body. However, the microscopic assumptions38

underlying this hypothesis require more concrete justification. Another hypothesis posits that the39

curved streamlines that wind around the helical flagellum produce shear flows that stretch individual40

polymers, resulting in elastic stresses which stabilize—hence speeding up—the cell’s swimming [6].41

It is recognized that this hypothesis relies on the expectation that the swimmer generates sufficient42

strain rates to stretch polymer molecules and raises the question of how large biopolymers interact43

with actively actuated filaments such as flagella on the single-polymer level.44

Additionally, there are separate phenomena in which the interactions between large polymers45

and active microorganisms are important but have yet to be studied on this microscopic level. For46
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FIG. 1. Snapshots from a single simulation of a rotating helix and an advected polymer taken at times
t0 < t1 < t2. A torque τ is distributed uniformly on the helix and, as it rotates, it generates a pumping flow. The
polymer is drawn in radially and axially toward the helix, stretching in the process due to the induced shear
flow. Once captured, it winds around the helix and is pumped axially in the direction of the average flow.

instance, various microbes have long been known to enhance filter feeding by employing their flagella47

or cilia to generate feeding currents that carry detritus and nutrients toward the cell body [13]. While48

motile neutrally buoyant planktonic bacteria [14] swim force free [15,16], these sessile microbes49

tether themselves in order to exert non-negligible net forces on the surrounding medium [17,18].50

Aggregations of such cells can collectively produce millimeter-scale fluid flows to actively combat51

variations in the nutrient concentrations [19]. While hydrodynamic attraction of small nutrients has52

been considered [20], the interaction of macromolecular polymers with sessile flagellates has yet to53

be explored in detail. A question that remains open is whether the filter feeding of large polymers54

progresses similarly to small tracer particles, or—as with swimming—whether the dynamics of55

individual polymers enhances or reduces a tethered cell’s ability to draw in polymeric material56

toward it.57

In this work, we explore how macromolecular biopolymers hydrodynamically interact with58

an active helical pump that transports fluid by external actuation using coarse-grained molecular59

dynamics simulations. A snapshot from our simulations is shown in Fig. 1. We first construct a60

simple Stokesian dynamics model of a rotating helix in a bulk fluid and justify the further use of this61

simplified model by comparing the flow field in the vicinity of the helix to that of a more specific62

biological model system comprised of a wall-tethered bacterium in a coarse-grained fluid. We show63

that the Stokesian dynamics scheme captures the relevant near-field physics of flow around a helix64

and proceed to study the dynamics of single polymers in its vicinity. Our results show that model65

polymers are hydrodynamically drawn radially inward and are elongated by the high shear rate. The66

polymers are then transported along the direction of the fluid flow while remaining elongated and67

wrap around the helix before being deposited downstream.68

We also study the stochastic energetics of the helix to show that the helix actively performs work69

on the polymer, driving it to the higher free-energy state of elongation which we observe. This work70

is positive on average, suggesting that the energy transferred to the polymer through hydrodynamic71

interactions is dissipated and not elastically transferred back to the helix.72

II. METHODS73

A. Stokesian dynamics simulation74

We employ a simulation scheme incorporating hydrodynamic interactions [21], referred to as75

Stokesian dynamics (SD), to study the behavior of a polymer in response to a steadily rotating76

helical filament. Both the polymer chain and the rotating helix are composed of sets of spherical77
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particles whose positions {r i} are updated according to Langevin dynamics due to forces { f i} and78

thermal fluctuations {ξ i}:79

ṙ i =
∑

j

(
kBT

∂μij

∂ rj

+ μij f j

)
+ ξ i(t), (1)

〈ξ i(t)ξ j (t ′)〉 = 2kBT μij δ(t − t ′). (2)

Equations (1) are coupled in two ways: (i) The total force f i({rj }) acting on particle i will in general80

contain a contribution due to pairwise interactions with nearby particles and (ii) hydrodynamic81

coupling between particles i and j is captured by the mobility tensor μij (r i ,rj ), which accounts82

for the advection of particle i due to the flow field created by forces f j acting on particle j .83

The fluid medium is responsible for dissipating the momentum of the particles, demanding the84

fluctuating forces obey the fluctuation-dissipation relation [Eq. (2)], which correlates the fluctuations85

experienced by two widely separated particles.86

We use the Rotne-Prager-Yamakawa (RPY) tensor for the mobility [22,23],87

μij

μ0
=

{
3a
4rij

(I + r̂ ij r̂ ij ) + a3

2r3
ij

(I − 3r̂ ij r̂ ij ) for rij � 2a,(
1 − 9rij

32a

)
I + 3

32
rij

a
r̂ ij r̂ ij otherwise,

(3)

for i �= j and where r ij = rj − r i , μ0 = 1/6πηa is the Stokes mobility of a sphere with radius a88

immersed in a fluid with viscosity η and I is the identity matrix. The self-mobility of particle i is89

simply μii = μ0 I . The RPY tensor has the property that ∂μij /∂ rj = 0, which simplifies the force90

balance equation (1).91

B. Polymer model92

All pairs of particles experience a mutual repulsion that acts over a characteristic length scale σ93

and is given by the Weeks-Chandler-Andersen (WCA) potential,94

Hrepel(r ij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6] + ε, if rij < 21/6σ,

0, otherwise.
(4)

The polymer is modeled as a chain of spherical beads, exerting pairwise attractive forces representing95

bonds between adjacent monomers. These bonding forces are calculated using the finitely extensible96

nonlinear elastic (FENE) potential [24],97

Hbond(r ij ) = −1

2
kbondr

2
0 ln

[
1 −

(
rij

r0

)2]
, (5)

with Kremer-Grest parameters [25] kbond = 30ε/σ 2 and r0 = 1.5σ . We choose ε = kBT for the98

characteristic strength of the potentials, σ for the spatial unit, and σ 2/μ0kBT for the temporal unit.99

This allows us to set kBT = 1, σ = 1, μ0 = 1 hereafter. In these units, the bead diameter is 21/6;100

hence a = 2−5/6, and the simulation time step is δt = 10−5. The conservative Hamiltonians Hrepel101

and Hbond give rise to pairwise forces, f i = − f j = −∇[Hrepel(r ij ) + Hbond(r ij )], which are the102

equal and opposite forces acting on particles i and j .103

For a three-dimensional system of N particles, Eqs. (1) can be rewritten in nondimensional form104

as a 3N × 3N matrix-vector difference equation involving time step δt ,105

δr = μ f δt + bδw, (6)

where δw is a random Gaussian vector with the properties 〈δw〉 = 0 and 〈δwδw〉 = 2δt I , and b is106

any matrix which satisfies bbT = μ. We find b by computing the Cholesky decomposition of μ and107

note that Cholesky decomposition requires μ to be positive definite, which is ensured by the RPY108
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tensor. Because the mobilities μij vary slowly with respect to the fastest time scales of the bond109

potentials, we update μ once every 100 time steps.110

C. Rotating helix model111

The rotating helix comprises a set of particles whose individual positions are externally controlled112

by time-dependent forces that prescribe the shape, rotational frequency ω, and translational velocity113

v of the helix. This is done by applying a rectifying force that opposes displacements of a constituent114

particle from its prescribed location via a stronger harmonic potential,115

Hh(r i ,t) = 1
2kh

[
r i − r0

i (t)
]2

, (7)

r0
i =

⎛
⎝R0 cos

(
κz0

i − ωt
)

R0 sin
(
κz0

i − ωt
)

z0
i + vt

⎞
⎠. (8)

The prescribed positions {r0
i } trace a helix along ẑ, with an imposed radius R0, and pitch [26] κ .116

For the helix potential strength, we use kh = 70ε. By applying the constraint that the target117

positions must be separated by diameter 2a in space, the required spacing in z is approximated118

by z0
i = 2a/

√
1 + κ2R2. We impose a constant angular rotation rate ω about the ẑ axis, and119

enforce stationarity by setting v = 0 along the ẑ axis. This model is adequate for reproducing120

the hydrodynamics of a rigid helix. Alternatively, modeling the helix as a semiflexible polymer121

would require solving bonding angle and dihedral angle potentials with large stiffnesses [27], in turn122

requiring δt to be many orders of magnitude below the shortest time scale of interest, which for our123

purposes is the relaxation time τ0 ∼ a2/μ0kBT of the SD beads.124

The helix particles (labeled by subscript i) are initialized in their target positions at t = 0, and then125

the helix as a whole relaxes into a steady state after a short transient period. The steady state differs126

slightly from the target shape due to (i) a viscous, drag-induced phase lag behind their target position,127

causing a shrinkage in their radial coordinate, which can shown to be R = R0/
√

1 + (μ0ω/kh)2 when128

no hydrodynamic interactions are present, and (ii) an additional collective displacement along z due129

to chiral asymmetry in the hydrodynamic interactions
∑

j (�=i) μij · f j with the other helix particles.130

For v = 0, these displacements δzi are counteracted by a net force on the helix − ∂Hh

∂z
= −Nhkhδz,131

which is imparted to the fluid in the ẑ direction.132

With this control over ω and v, we can drag, rotate, or apply some combination of translation and133

rotation to the helix. The imposed rotation and translation implies an external axial force and torque134

via the linear mobility relation135 (
v

ω

)
=

(
μtt μtr

μrt μrr

)(
fz

τz

)
, (9)

where the components μtt , μtr = μrt , μrr are mobility coefficients for the helix as a whole and not136

to be confused with the Rotne-Prager tensor μ. In general, the full mobility relation also includes137

off-axis force and torque components fx,y and τx,y ; however, these are small compared to fz and138

τz, and because the potential Hh keeps the helix centered and aligned along ẑ, this results in small139

off-axis contributions to the fluid flow.140

III. HELIX HYDRODYNAMICS141

A. Flow field generated by rotating helix in SD simulations142

We focus solely on a stationary helix (v = 0) rotating at some angular speed ω. This implies a143

nonzero force fz = −μtr

μtt
τz must be imparted to the fluid, and the rotating helix acts as a pump. This144

model evokes the microscopic experiments on tethered bacteria [28,29] as well as many scaled-up145

experiments of tethered flagella-like filaments [30–34].146
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FIG. 2. [(a), (b)] Cross sections of the instantaneous flow field generated by a rotating helix, decomposed
into components vz(r,t) and v⊥(r,t) respectively. (c) Streamlines of the full flow field v(r,t) show
both the net flow along ẑ and the chiral winding caused by the rotation of the helix. (d) time-
averaged fields as a function of radial distance from helix center line, v̄z(r,t) and v̄⊥(r,t). Within the
volume of the helical filament (r < R), the fluid rotates like a rigid body, v⊥ ∝ r , and flows axially
at a constant rate vr = const. (e) Slice in the xy plane of the mean rotational flow. (f) Slice in the
xz plane of the mean axial flow.

In the SD simulations of a helix on its own, we can evaluate the instantaneous flow field at147

any point r in space by summing the contributions that each particle in the simulation makes:148

v(r) = ∑
i μ(r − r i) · f i , where μ(r ′) is given by Eq. (3) with r ij = r ′. Figures 2(a)–2(c) offer149

a visualization of the instantaneous flow field surrounding a rotating helix. In Fig. 2(a), the axial150

component vz shows that the fluid is most strongly pumped in the interstitial volume of the helix,151

similar to the instantaneous axial flow field measured in experiments on a tethered rotating helix152

[34]. As the axial velocities of the helix beads are 0, vz must vanish at the helix surface. However,153

the transverse flow field v⊥ is strongest at the helix surface as it must match the transverse velocity154

of the beads [Fig. 2(b)]. An instantaneous snapshot of the streamlines originating from a square grid155

in the xy plane beneath the helix gives a visual sense of the chiral nature of the flow field [Fig. 2(c)].156

By taking a time average v̄(x,y,z) over a complete rotation of the helix, we can understand how157

the flow field varies in space in more detail. Figure 2(d) shows how v̄z and v̄⊥ decay as a function158

of radial distance r from the z axis along which the helix lies. In the far field, we observe v̄z ∼ 1/r ,159

which is the characteristic scaling expected from a point-force (stokeslet) response of an unbounded160

fluid. This is as expected, since we must apply a force fz on the helix such that μttfz + μtrτz = 0161

by Eq. (9) to ensure the rotating helix remains stationary (v = 0). Hence, far away from the helix,162

the fluid responds as if subject to a point force.163

The far-field scaling of the transverse velocity is the characteristic scaling for a rotlet, v̄⊥ ∼ 1/r2,164

which we expect to dominate the far-field flow created by an external torque rotating a body immersed165

in the fluid. However, in the intermediate region (R < r < 10R), the transverse forces on the beads166

on the near side of the helix dominate over the oppositely directed forces on the far side, and therefore167

a stokeslet-like scaling v̄⊥ ∼ 1/r is seen.168

Within the interior of the helix, we see interesting scaling properties v̄z ∼ const, and v̄⊥ ∼ r ,169

which shows that on average the fluid inside the helix rotates about ẑ and translates along ẑ as a170

rigid body—though the instantaneous dynamics are more complicated. Figures 2(e)–2(f) show the171
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FIG. 3. The three components of the helix friction tensor as a function of pitch length 2π/κ . The data (black
dots) are determined by measuring fz, and τz separately as functions of v and ω for different κ in order to
determine the matrix components μtt , μtr , and μrr . The solid lines are calculated using analytical results from
slender body theory (Eqs. (44) from Ref. [16]). Increasing the pitch length decreases the isotropic components
of the friction tensor, while increasing the coupling between rotation and translation. Inset: The helix shapes
for the extremal choices of pitch.

time-averaged flow fields. The transverse flow field is strongest in the annular region occupied by172

the helical filament itself, while the axial flow field is uniformly strong across the whole volume.173

B. Friction tensor of helical filament in SD simulations174

In order to measure the helix mobility, we conducted SD simulations of a helix (with no polymer175

present) while linearly ramping up either the velocity or angular velocity, while keeping the other176

zero. In the first instance (v = v0t/T ,0) was imposed and in the second instance (0,ω = ω0t/T )177

was imposed, where v0 and ω0 are the target final velocities and the length of the simulation, T ,178

was sufficiently long to ensure that the system remained in a quasisteady state. In both cases, we179

measured (fz,τz) in order to solve the linear system Eq. (9). We conducted this for a range of180

κ ∈ ( 2π
25 , 2π

5 ) to measure how the friction components changed as a function of helix shape. The181

functional dependence of these coefficients on κ can be derived analytically using slender-body182

theory [35,36]. The SD simulation results are in good agreement with theoretical predictions [16] as183

shown in Fig. 3.184

We observe that as the pitch length increases, μtt and μrr decrease, while μtr increases. This185

tells us that the coupling between axial force and rotation (or conversely between applied torque186

and resulting translational speed) increases as the pitch length is increased over the range shown.187

This behavior can be understood intuitively by considering the limiting case of small pitch length188

2π/κ → σ , in which the filament resembles a cylinder which by symmetry must have a totally189

decoupled mobility relation.190

The data for μtt and μtr fit very well to the slender-body prediction. However, while μrr191

qualitatively displays a similar dependence on pitch length to the analytic prediction, it appears to192

systematically deviate from the theory. As previously discussed, the steady-state shape of the helix193

realized in a simulation deviates slightly from its target shape [defined by Eq. (7)]. This effect of194

this is generally small, but it appears that μrr is the more sensitive to this dynamic remodeling than195

the other components of the mobility matrix. However, in the remainder of this study, we will only196

conduct simulations in which the helix parameters remain constant and so this discrepancy in μrr197

as a function of κ does not affect our findings.198

C. Scope of rotating helix model199

Because our model helix remains in a fixed location in ẑ, it is neither force-free nor torque-free;200

hence its flow field will differ to that generated by a swimming cell in the far field. Artificial201

swimming magnetic ribbons [37,38] are arguably the most similar experimental realization of our202

system due to the net torque they impart, but unless they are stalled by an external force, they203
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FIG. 4. [(a)–(c)] Comparison of the time-averaged flow fields generated by (a) MCPD fluid simulations of
a cell attached to a wall vs (b) SD simulations of a helix rotating in a bulk fluid computed in the xy plane.
These two measured fields differ only by Gaussian fluctuations inherent in the MPCD simulation as shown
in (c). [(d)–(f)] Same as panels (a)–(c) except in xz plane. Panel (f) shows that there are systematic differences
in the flow fields in this plane, mainly due to the presence of the wall. The contour-enclosed region in the lower
quarter of the image represents where the flow field differs by |v̄MPCD

z − v̄SD
z | > 0.25. Everywhere else, the

fields behave similarly.

remain force free too. Hence, the force and torque nature of our model is more akin to systems in204

which flagellated cells are in some way stalled or tethered, e.g., by hydrodynamic accumulation at205

boundaries [39], immobilization on microscope slides [28,29], or as part of their biological function206

[17,18]. However, in these cases, hydrodynamic interactions with the boundaries and cell bodies207

are a potential source of discrepancy between the results of our model and these experimental and208

biological systems.209

We wish to quantify this difference and demonstrate that our system is nevertheless a sufficiently210

good model for studying the near-flagellum dynamics of a polymer. To achieve this, we compare211

the flow fields measured from the SD simulations to multiparticle collision dynamics (MPCD)212

simulations of a more experimentally realistic geometry with a cell body and neighboring wall,213

as MPCD provides the appropriate machinery for incorporating boundaries and cell-specific body214

geometry. Further details of the MPCD procedure can be found in the Appendix.215

In Fig. 4, we compared the time-averaged flow fields v̄MPCD and v̄SD generated by the MPCD216

and SD simulations respectively. Both quantities were normalized by dividing by the mean velocity217
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inside the volume occupied by the helix. By visual inspection, we observe that the coarse structure218

of the axial and transverse flows are qualitatively similar in both simulations.219

To quantitatively compare the two fields, we analyzed the square differences (v̄MPCD
z,⊥ − v̄SD

z,⊥)2 to220

see how they decay relative to one another. In Fig. 4(c), we can see that (v̄MPCD
⊥ − v̄SD

⊥ )2 appears221

to have the structure of uniform noise. A Kolmogorov-Smirnov test on the data for the unsquared222

difference v̄MPCD
⊥ − v̄SD

⊥ did not yield evidence for a non-Gaussian distribution, and so we conclude223

that v̄MPCD
⊥ differs from v̄SD

⊥ by the Gaussian noise present in the MPCD simulation only.224

However, there are more significant differences in the radial flow fields due to the presence of225

the cell body and the wall in the MPCD simulations. The square difference (v̄MPCD
z − v̄SD

z )2, plotted226

in Fig. 4(f), reveals a systematic variation across the whole region that is roughly one order of227

magnitude greater than the noise in Fig. 4(c). The contour-enclosed area connected to the wall (at228

z = 0) shows the region in which the flow fields differ by |v̄MPCD
z − v̄SD

z | > 0.25. Evidently, the cell229

body and wall have some significant influence on the flow in this region but not in the immediate230

vicinity of the model flagellum.231

The fact that the radial fields are in better agreement than the axial fields can be understood by232

noting that v̄⊥ ∼ 1/r2 decays over shorter distances than v̄z ∼ 1/r , and hence the wall effects play233

a much larger role for the axial fields.234

Since our main focus in this paper is the near-flagellum dynamics of polymers and helices235

interacting across length scales similar to and less than their own spatial dimensions, we take236

these MPCD results as evidence that far-field effects (such as those generated by counter-rotating237

cell bodies, solid boundaries, and indeed other nearby swimmers or filaments) do not contribute238

appreciably to the dynamics of polymers sufficiently close to the helical filament. In this region, we239

expect the chiral, high-shear, and geometry-specific flow of the helix to characterize the behavior of240

a nearby polymer, and far-field effects due to boundaries or other bodies to be secondary.241

IV. POLYMER CAPTURE242

The central result of this paper is that a rotating helix transports a polymer along with the fluid243

it pumps, but in such a way that a polymer initially on the outside of the helix is drawn inward244

and “captured” by the helix. This is accompanied by an initial stretching out of the polymer as it245

migrates toward the helix, moving into a region of greater shear and greater flow as seen in Fig. 1. As246

it is transported along the interior of the helix, it occasionally wraps around the helical filament and247

rotates along with it. An instance of such wrapping is observed in Fig. 1. The polymer is deposited248

at the end of the helix, where a decaying axial current keeps moving it at a diminishing rate, while249

the lower shear results in the polymer collapsing back into its unstretched ground state. Two movies250

of a typical capturing process can be found in Ref. [40].251

The polymer capture and transport is a stochastic, nonequilibrium transient process; however,252

by performing a large number of “scattering” simulations and averaging over these, we are able to253

quantify the typical nature of the interaction as a function of polymer size. We present batches of254

simulations for degrees of polymerization (number of beads) Np = 1,10,30,50—where a polymer255

of contour length 1 is simply a spherical monomer. In each of these simulations, we use helices256

with the same parameters: Nh = 200 beads, κ = 2π/15σ , R = 4σ . The helix is centered along the257

z axis, with its two ends located at (z0,zNh−1) = (−57σ,57σ ). In each simulation, one polymer is258

initialized by placing its first monomer randomly on a disk of radius 16σ , located at (z0 − 30σ ), then259

performing a self-avoiding random walk to build the polymer bead by bead. We run each simulation260

for T = 2 × 106δt , which is sufficient in all cases to advect the polymers beyond the rear of the helix.261

We measure the relaxation times of the polymers in separate simulations and found them to be τp ≈262

{1,10,20} × 106δt for the N = {10,30,50} polymers respectively. Taking the helix rotation speed263

ω = 2 × 10−4/δt as the characteristic shear rate for the fluid, we therefore estimate the respective264

Weissenberg numbers characterizing each set of simulations to be Wi ∼ ωτp = {200,2000,4000}.265

As Wi  1 in each of these cases, the influence of shear flow dominates the polymers’ tendency to266

relax.267
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FIG. 5. [(a)–(d)] Polymer distributions averaged over all simulations and over all time show the net behavior
of polymers being pumped in the positive-z direction, given an initial distribution of polymers on a disk of
radius r = 4R, located at z ≈ −10R in cylindrical coordinates (r,z). Each distribution is averaged over 200
simulations for polymers of size (a) N = 1 (colloidal tracers), (b) N = 10, (c) N = 30, and (d) N = 50. The net
behavior is a drift toward the right of each image, due to the helix (not shown) pumping the fluid. [(e)–(h)] The
same data as in panels (a)–(c) respectively, but plotted as distributions over r only, with each curve representing
contiguous quarter intervals of the simulation time. In each case, the initial quarter is the shaded region, and
we observe that for increasing polymer size, a strong tendency for the polymers to migrate inward is observed.
For larger polymers, this tendency is stronger and occurs faster.

To illustrate how the ensembles of polymers evolve in time, we plot the average monomer268

distribution in cylindrical coordinates (r,z) taken over all simulations and at all times. These are269

plotted for polymers of differing size in Figs. 5(a)–5(d). These images represent time- and ensemble-270

averaged 2D histograms of the snapshots shown in Fig. 1. At the left edge of each of the images is271

the initial distribution of polymeric material which in each case is smeared rightward in time. The272

structure of this distribution gives a graphical indication that larger polymers [such as in Figs. 5(c)273

and 5(d)] are much more strongly attracted to the helix than smaller polymers and are highly274

concentrated in the region r < 2R. On the other hand, in Fig. 5(a) this effect is barely observed for275

N = 1 monomers, which are simply advected along the streamlines shown in Fig. 2(f) like tracer276

particles that cannot cross streamlines; polymers, on the other hand, are able to cross streamlines in277

shear flow [41], and in this case do so strongly in a nontrivial manner.278

Particularly for high Weissenberg numbers [42–44], we observe hotspots in the distributions279

located at the downstream end of the helix. These indicate the accumulation of polymers in this280

location when they are deposited at the end of the helix and collapse back into their equilibrium281

conformation. Though they continue moving along the z axis, they do so at a lower rate than when282

inside the helix. This is due to the fact that the axial flow vz quickly decreases outside of the helix283

[as can be seen in Fig. 2(f)].284

In Figs. 5(e)–5(h), we segment each simulation into four equal and contiguous intervals in time,285

and separately plot the marginal distributions over r only (i.e., with the z component integrated286

out) for each time. The shaded region represents the interval t0 = [0,T /4], which is the first quarter287

of each simulation and closely approximates the initial distribution. These figures show how the288

initial distribution evolves with time for polymers of different size. For Np = 30 and Np = 50, the289

tendency to concentrate in and around the helix is markedly stronger than for shorter polymers. This290

ensemble behavior shows that the actuation of the helix is responsible for a large density fluctuation291

in the surrounding polymeric material that concentrates—rather than depletes—the polymers in the292

immediately surrounding region. Animations of the densities as a function of time can be found in293

Ref. [45].294

This implies that the free energy of the polymers must be actively driven away from what we295

would expect in equilibrium. We obtain an intuitive sense that this is occurring by considering the296

snapshots in Fig. 1. Initially, the polymer is far away and its configuration is that of a self-avoiding297

random walk. However, at intermediate times, the polymer is stretched out of equilibrium by the298

shear flow and is transported radially inward as well as along z until it strongly interacts with the299
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helix, wrapping around it and continuing to move along z. In the vicinity of the helix, polymers300

lose their equilibrium conformation, and we observe features in their dynamics similar to those301

previously reported for polymers in shear flow due to a rotating microwire [46]. To gain further302

insight into the energetic interplay within our system, we analyze the stochastic fluctuations in work303

performed by the helix on the polymer.304

V. FLUCTUATING WORK305

Polymers tend to become stretched when immersed in a shear flow, and this agrees with the306

current SD simulations. However, because the shear flow in this case is generated by external forces307

acting on the helix, we expect these forces to be dependent on the proximity of a polymer in the308

surrounding medium. The hydrodynamic origin of this is due to the effect of the polymer on the helix309

particles: Hydrodynamic interactions displace the helix particles from their steady state positions,310

resulting in a change in the forces acting on them due to Eq. (7). While these displacements are too311

small to give rise to a perceptible change in helix shape, they should in general manifest themselves312

as a change in work that the helix must do to maintain steady rotation.313

The work applied to the helix by the external forces, w[t,r(t)], is a fluctuating quantity which is a314

unique function for each realization of a stochastic dynamical process. Work is performed either by315

the application of a nonconservative force or by a time-varying potential, H(r,λ(t)) with an external316

control parameter λ(t). For the latter case, the work applied by a time t is defined by Ref. [47]:317

w[t,r(t)] = ∫ t

0 dt ′λ̇∂H/∂λ. The nonstochastic forces in our simulation are due to the potentials318

Hrepel, Hbond, and Hh in Eqs. (4), (5), and (7). Of these, only the forces acting on the helix due to319

Hh depend explicitly on time and it is these that are entirely responsible for the work done on the320

system.321

For each simulation, we calculate the incremental work performed by the helix at each time step322

by323

δw =
∑

i

f h
i · δr0

i , (10)

where f h
i = −∇Hh(r i ,t) is time-varying force applied to particle i. Note the increment δr0

i is324

the displacement of the bead target position, not the displacement of the bead itself. From these325

increments δw, we build up an accumulated work trajectory w(t) = ∑
t δw.326

We expect there to be two contributions to the work: w(t) = w0(t) + wex(t). The dominant327

contribution w0(t) is the deterministic work done by the rigid helix on the viscous fluid, which is328

viscously dissipated. The second contribution is wex(t), which is the stochastic excess work done on329

the polymer. By conducting simulations without a polymer, we can measure the dominant viscous330

contribution, w0(t), and use this to calculate the excess contribution in simulations that do contain a331

polymer: wex(t) = w(t) − w0(t).332

In Fig. 6, we plot three ensembles of trajectories wex(t) for the work done by a helix on three333

sizes of polymer: N = (10,20,40). In each simulation, the polymer is initialised by a self-avoiding334

random walk starting at r0 = [0,15σ,(z0 − 15)σ ], where z0 is the z position of the negative-most335

particle of the helix which pumps fluid in the positive-z direction. We measure wex(t) for the entirety336

of each simulation over a time interval of 80 full rotations. For all simulations, this is enough time to337

allow for the polymer to relax back to its equilibrium conformation after it has exited the positive-z338

end of the helix.339

These sets of trajectories offer another way to look at the stretching effect: a set of stochastic340

work trajectories {wi[t,r(t)]} drive the polymer to a higher free energy state though in each instance341

requiring a different amount of work. The color of each curve denotes the radial point of closest342

approach of the center-of-mass position of the polymer—i.e., the minimum of rcm(t)/R over all343

t—from which we can see that more work was done on polymers which migrated further in.344

This indicates that more work must be done on maintaining the stretched-out conformation which345

polymers adopt in the high-shear region of the helix core.346
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FIG. 6. [(a)–(c)] Stochastic excess work performed by a rotating helix in transporting polymers of size
N = (10,20,40) respectively in 200 experiments performed for each case. The markers correspond to the point
at which the center of mass of the polymer exits the negative end of the helix. Once this occurs, the polymers
collapse and advect with the fluid; no more work is performed on them. The markers are color coded by the
point of closest approach to the central long axis of the helix for the polymer in that experiment, mint (r). More
work on average was performed to transport polymers that migrated nearer (magenta) the central axis than on
polymers which failed to become captured (cyan). [(d)–(f)] Mean excess power per revolution, averaged over
200 simulations. For each time step, dwex was calculated and smoothed with a window size of ∼1/4 revolution.
The shaded region corresponds to the standard error on the mean. [(g)–(i)] Mean increase in polymer energy
calculated using the potentials Hrepel and Hbond with the same smoothing and averaging procedure employed in
panels (d)–(f).

The trajectories are nonmonotonic, and some trajectories temporarily deviate into the negative347

work region, which is a hallmark of the thermodynamics of stochastic systems. We further notice348

that once the polymer has exited the helix, wex(t) flattens dramatically. This corresponds to the349

observation that when the polymer is deposited at the rear end of the helix, it quickly collapses to its350

equilibrium configuration and highlights that the rotation of the helix principally impacts polymers351

in its immediate vicinity. Furthermore, the fact that wex(t) does not overshoot its final value tells352

us that the helix does not regain any of the work it has supplied to the polymer when the polymer353

relaxes. Indeed, the scale of wex is much larger than the stored energy in the polymer, suggesting that354
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this energy is being dissipated into the environment. This is in contrast to the observed enhancement355

of swimming due to the energetics of noiseless elastic surroundings [48,49]. In such systems, elastic356

networks or tubes which a swimmer swims through store elastic energy and transfer this energy357

back to during relaxation. However, in our system, the heat bath to which the polymer is attached358

robs the helix of any such energy storage mechanism.359

To gain further insight, we measured the change in energy stored in the polymers, �H(t) =360

�Hbond(t) + �Hrepel(t) (where � corresponds to a difference with respect to the quantities evaluated361

at t = 0). After smoothing these traces using a Savitzky-Golay filter with a window size of ∼1/4362

helix revolutions, and then averaging over all simulations, we obtain an indication of how the energy363

stored in the polymer increases on average. We also applied the same smoothing and averaging364

procedure to the work increments dwex(t) to compare how the mean energy stored in the polymers365

was related to the work rate of the helix. These results are plotted in Figs. 6(d)–6(i). We see no366

measurable increase in stored energy for the N = 10 polymer, but statistically significant increases367

for the N = 20 and N = 40 polymers. These increases in energy are due to the elongation the larger368

polymers suffer when they are captured by the helix—a phenomenon which we have shown varies369

with polymer size. While the energy stored in the N = 10 polymer does not significantly increase,370

the helix still performs a significant amount of work in transporting it. For the N = 20 and N = 50371

polymers, we can see that the helix performs roughly 10kBT of work per revolution for every 1kBT372

energy maintained in the polymer. Because for the N = 10 polymer the power is on the order of373

1kBT per revolution, this predicts the mean stored energy to be much less than the its fluctuations374

and hence negligible.375

In general, the work excess term is typically smaller than the viscous term by ∼4 orders of376

magnitude. However, this is for a solitary polymer in the vicinity of the helix. In a suspension of377

polymers, we hypothesize that the excess work takes the form of a sum over the work performed on378

each polymer and so will be proportional to the local density of the solution at least in the dilute limit379

where polymer-polymer interactions can be ignored. As we have shown separately, the effect of the380

helix is to increase the local density of polymeric material so we expect this, combined with the work381

done on stretching the polymers, to give rise to strongly nonlinear viscoelastic effects. This offers382

some contrast to the hypothesis that bacterial flagella on their own deplete their local environment383

of biopolymeric material and hence experience only the background Newtonian solvent [12].384

VI. CONCLUSIONS385

Microbes live in complex fluidic environments, often of their own making. Microbial extracellular386

polymeric substances are continually secreted for a wide variety of purposes [50,51], including387

anchoring to surfaces by long mucous stalks [18,19], bioaccumulation of contaminants [52], and to388

serve as the polymeric matrix within biofilms [53], veils [54], and other collective structures [55].389

Motile swimmers must move through these complex media, while sessile microorganisms drive the390

transport of large high-conformational-entropy biopolymers. Previous work has focused on feeding391

currents [13] entraining nutrients modelled as tracer particles (which can be well described by392

hydrodynamic multipole expansion methods) [56,57] or on the continuum limit of a viscoelastic fluid393

medium through which microbes must swim [1,7,58–60] or pump [61,62] fluid. Both approaches394

average over the many internal degrees of freedom of long, flexible biopolymers.395

We have shown how Stokesian dynamics simulations of a rotating helical filament can accurately396

model the near-field fluid flow of a flagellated cell tethered to a wall and studied the effects of this397

flow field on nearby coarse-grained polymers of various size. We have shown that long polymers are398

strongly attracted to the model flagellum and undergo a nonequilibrium stretching process as they399

are pulled toward it and pumped along it. This implies that a dilute suspension of polymers tend to400

become locally concentrated in and around the flagellum rather than depleted.401

Our results show that it is possible in simulations to measure the work applied to the polymer by402

the helix and that this is on average positive. Moreover, all of the work supplied to the polymer is403

dissipated, meaning that there is no elastic reclamation by the helix of the polymer’s free energy when404
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it collapses upon exit of the helix such as that observed in noiseless systems [48,49]. Hence, our results405

provide some fundamental phenomenological insights into activity in microscopic, viscoelastic406

systems. In future work, we hope to tackle the question of a swimming helix (i.e., one in which vz407

is set to a speed that ensures the force-free condition: fz = 0), as well as testing the hypothesis that408

multiple polymers increase the excess work done by the helix by a proportionate amount.409
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APPENDIX: MULTIPARTICLE COLLISION DYNAMICS SIMULATION415
1

To verify that our SD helix model well approximates the near-field flow of a sessile flagellated416

microbe in the presence of environmental boundaries in a manner that does not depend significantly417

on cell-body-induced or wall-induced hydrodynamic interactions, we construct a more biologically418

accurate but computationally costly model of a wall-tethered bacterium and simulate it using419

multiparticle collision dynamics (MPCD).420

MPCD is a particle-based method to solve the Navier-Stokes equations on a coarse-grained level421

where particle dynamics and interactions are solved in alternating streaming and collision steps422

[63,64]. This method has been used successfully to model the hydrodynamics of microswimmers423

near surfaces [65–72] and wall-tethered flagella [73,74]. The fluid is modeled by pointlike effective424

particles with mass m at positions r i with velocities vi .425

In the streaming step, the fluid particles move ballistically for a time step δt , and their positions426

are updated according to427

r i(t + δt) = r i(t) + vi(t)δt. (A1)

In the collision step, particles are sorted into cubic cells of side length h, and all particles in a cell428

stochastically exchange momentum according to429

vi(t + δt) = uξ + vr + vP + vL, (A2)

where uξ is the mean velocity in the cell, vr is a random velocity drawn from a Maxwell-Boltzmann430

distribution at temperature T , and vP and vL are correction factors to conserve momentum and431

angular momentum in the cell [75]. All physical quantities are measured in units of cell length h,432

fluid mass m, and thermal energy kBT . We use a time step δt = 0.02
√

mh2/kBT and a mean433

number of fluid particles per cell γ = 10, resulting in high Schmidt and Mach numbers to reproduce434

near-incompressible viscous Newtonian flows at low Reynolds number [76].435

Figure 4(d) includes a representation of the bacterium model we use. The cell body itself436

is modeled as a rigid superellipsoid [77] defined by the surface[(x/hx)2/ε2 + (y/hy)2/ε2 ]
ε2/ε1 +437

(z/hz)2/ε1 = 1, where we use hx = hy = 2h, hz = 4h, ε1 = 0.5, and ε2 = 1. It is oriented438

perpendicular to a wall (located at z = −50h) and fixed at (x0,y0,z0) = (0,0,−46h). We add a439

second wall far away from the bacterium at z = 50h, and use periodic boundary conditions in the440

x and y directions with x,y, ∈ (−50h,50h). The flagellum is modeled as a rigid helical polymer441

consisting of 57 pointlike beads of mass 10m, which are separated by 1h. The helix is given by the442

curve443

r(z) = (
R

[
1 − e−(κz/ls )2]

cos(κz),R
[
1 − e−(κz/ls )2]

sin(κz),z
)
, (A3)

where we use R = 2h as the helix radius, pitch κ = 1/h, and κz is the phase of the helix measured444

from where it meets the body. A nonzero Higdon parameter [78] ls = 3 ensures that the helix is445

attached at the center of the cell body surface.446
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To model no-slip boundary conditions at the walls and the cell surface, a bounce-back rule for the447

fluid particles is used [64]. The transfer of momentum between the flagellum and the fluid is achieved448

by including the flagellum beads into the collision step [79]. While the cell body is kept fixed during449

the simulation, the helix is rotated with a constant angular velocity ω = (5.6 × 10−4)/δt , and the450

surrounding flow field is measured for a time t = 105δt and averaged over 70 independent runs.451
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