227 research outputs found

    Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods.

    Get PDF
    Nickel zinc ferrite nanoparticles, Ni1−xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method

    Exporting and labor demand : micro-level evidence from Germany

    Get PDF
    It is widely believed that globalization affcts the extent of employment and wage responses to economic shocks. To provide evidence for this, we analyze the effect of firms' exporting behavior on the elasticity of labor demand. Using rich, German administrative linked employer-employee panel data from 1996 to 2008, we explicitly control for self-selection into exporting and endogeneity concerns. In line with our theoretical model, we find that exporting at both the intensive and extensive margins significantly increases the (absolute value of the) unconditional own-wage labor demand elasticity. This is not only true for the average worker, but also for different skill groups. For the median firm, the elasticity is three-quarters higher when comparing exporting to nonexporting firms

    Action Mechanism of Inhibin α-Subunit on the Development of Sertoli Cells and First Wave of Spermatogenesis in Mice

    Get PDF
    Inhibin is an important marker of Sertoli cell (SC) activity in animals with impaired spermatogenesis. However, the precise relationship between inhibin and SC activity is unknown. To investigate this relationship, we partially silenced both the transcription and translation of the gene for the α-subunit of inhibin, Inha, using recombinant pshRNA vectors developed with RNAi-Ready pSIREN-RetroQ-ZsGreen Vector (Clontech Laboratories, Mountain View, Calif). We found that Inha silencing suppresses the cell-cycle regulators Cyclin D1 and Cyclin E and up-regulates the cell-cycle inhibitor P21 (as detected by Western blot analysis), thereby increasing the number of SCs in the G1 phase of the cell cycle and decreasing the amount in the S-phase of the cell cycle (as detected by flow cytometry). Inha silencing also suppressed Pdgfa, Igf1, and Kitl mRNA levels and up-regulated Tgfbrs, Inhba, Inhbb, Cyp11a1, Dhh, and Tjp1 mRNA levels (as indicated by real-time polymerase chain reaction [PCR] analysis). These findings indicate that Inha has the potential to influence the availability of the ligand inhibin and its antagonist activin in the SC in an autocrine manner and inhibit the progression of SC from G1 to S. It may also participate in the development of the blood–testis barrier, Leydig cells, and spermatogenesis through its effect on Dhh, Tjp1, Kitl, and Pdgfa. Real-time PCR and Western blot analyses of Inha, Inhba, and Inhbb mRNA and Inha levels over time show that Inha plays an important role in the formation of round spermatid during the first wave of spermatogenesis in mice

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Mutation of the Zebrafish Nucleoporin elys Sensitizes Tissue Progenitors to Replication Stress

    Get PDF
    The recessive lethal mutation flotte lotte (flo) disrupts development of the zebrafish digestive system and other tissues. We show that flo encodes the ortholog of Mel-28/Elys, a highly conserved gene that has been shown to be required for nuclear integrity in worms and nuclear pore complex (NPC) assembly in amphibian and mammalian cells. Maternal elys expression sustains zebrafish flo mutants to larval stages when cells in proliferative tissues that lack nuclear pores undergo cell cycle arrest and apoptosis. p53 mutation rescues apoptosis in the flo retina and optic tectum, but not in the intestine, where the checkpoint kinase Chk2 is activated. Chk2 inhibition and replication stress induced by DNA synthesis inhibitors were lethal to flo larvae. By contrast, flo mutants were not sensitized to agents that cause DNA double strand breaks, thus showing that loss of Elys disrupts responses to selected replication inhibitors. Elys binds Mcm2-7 complexes derived from Xenopus egg extracts. Mutation of elys reduced chromatin binding of Mcm2, but not binding of Mcm3 or Mcm4 in the flo intestine. These in vivo data indicate a role for Elys in Mcm2-chromatin interactions. Furthermore, they support a recently proposed model in which replication origins licensed by excess Mcm2-7 are required for the survival of human cells exposed to replication stress

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    The Impact of Financial Market Frictions on Trade Flows, Capital Flows and Economic Development

    Full text link
    We introduce financial frictions in a two sector model of international trade with heterogeneous agents. The level of specialization in the economy (economic development) depends on the quality of financial institutions. Underdeveloped financial markets prohibit an economy to specialize in sectors where finance is important. Capital flows and international trade are complements when countries differ in the degree of development of their financial sectors. Capital flows to countries with more robust financial institutions which in turn allow their economies to develop sectors that are financially dependent

    The Rise and Fall of Export-Led Growth

    Full text link
    This paper traces the rise of export-led growth as a development paradigm and argues that it is exhausted owing to changed conditions in emerging market (EM) and developed economies. The global economy needs a recalibration that facilitates a new paradigm of domestic demand-led growth. Globalization has so diversified global economic activity that no country or region can act as the lone locomotive of global growth. Political reasoning suggests that EM countries are not likely to abandon export-led growth, nor will the international community implement the international arrangements needed for successful domestic demand-led growth. Consequently, the global economy likely faces asymmetric stagnation
    • …
    corecore