185 research outputs found
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma
We elucidate the close connection between the repulsive lattice gas in
equilibrium statistical mechanics and the Lovasz local lemma in probabilistic
combinatorics. We show that the conclusion of the Lovasz local lemma holds for
dependency graph G and probabilities {p_x} if and only if the independent-set
polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore,
we show that the usual proof of the Lovasz local lemma -- which provides a
sufficient condition for this to occur -- corresponds to a simple inductive
argument for the nonvanishing of the independent-set polynomial in a polydisc,
which was discovered implicitly by Shearer and explicitly by Dobrushin. We also
present some refinements and extensions of both arguments, including a
generalization of the Lovasz local lemma that allows for "soft" dependencies.
In addition, we prove some general properties of the partition function of a
repulsive lattice gas, most of which are consequences of the alternating-sign
property for the Mayer coefficients. We conclude with a brief discussion of the
repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity.
To be published in J. Stat. Phy
Different paths to the modern state in Europe: the interaction between domestic political economy and interstate competition
Theoretical work on state formation and capacity has focused mostly on early modern Europe and on the experience of western European states during this period. While a number of European states monopolized domestic tax collection and achieved gains in state capacity during the early modern era, for others revenues stagnated or even declined, and these variations motivated alternative hypotheses for determinants of fiscal and state capacity. In this study we test the basic hypotheses in the existing literature making use of the large date set we have compiled for all of the leading states across the continent. We find strong empirical support for two prevailing threads in the literature, arguing respectively that interstate wars and changes in economic structure towards an urbanized economy had positive fiscal impact. Regarding the main point of contention in the theoretical literature, whether it was representative or authoritarian political regimes that facilitated the gains in fiscal capacity, we do not find conclusive evidence that one performed better than the other. Instead, the empirical evidence we have gathered lends supports to the hypothesis that when under pressure of war, the fiscal performance of representative regimes was better in the more urbanized-commercial economies and the fiscal performance of authoritarian regimes was better in rural-agrarian economie
l=0 to l=1 Transition Form Factors
A method is proposed to extend the hard scattering picture of Brodsky and
Lepage to transitions between hadrons with orbital angular momentum l=0 and
l=1. The use of covariant spin wave functions turns out to be very helpful in
formulating that method. As a first application we construct a light-cone wave
function of the nucleon resonance in the quark-diquark picture.
Using this wave function and the extended hard scattering picture, the
-- transition form factors are calculated at large momentum transfer
and the results compared to experimental data. As a further application of our
method we briefly discuss the -- form factors in an appendix.Comment: 27 pages, 6 PS-figures in uuencoded compressed file, Latex, WU-B
93-29, MZ-TH/93-2
Enhancing Perceived Safety in Human–Robot Collaborative Construction Using Immersive Virtual Environments
Advances in robotics now permit humans to work collaboratively with robots. However, humans often feel unsafe working alongside robots. Our knowledge of how to help humans overcome this issue is limited by two challenges. One, it is difficult, expensive and time-consuming to prototype robots and set up various work situations needed to conduct studies in this area. Two, we lack strong theoretical models to predict and explain perceived safety and its influence on human–robot work collaboration (HRWC). To address these issues, we introduce the Robot Acceptance Safety Model (RASM) and employ immersive virtual environments (IVEs) to examine perceived safety of working on tasks alongside a robot. Results from a between-subjects experiment done in an IVE show that separation of work areas between robots and humans increases perceived safety by promoting team identification and trust in the robot. In addition, the more participants felt it was safe to work with the robot, the more willing they were to work alongside the robot in the future.University of Michigan Mcubed Grant: Virtual Prototyping of Human-Robot Collaboration in Unstructured Construction EnvironmentsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145620/1/You et al. forthcoming in AutCon.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145620/4/You et al. 2018.pdfDescription of You et al. 2018.pdf : Published Versio
- …