43 research outputs found

    Are We Nodding for the Noodles? – An Empirical Evidence among the Bengaluru Youth

    Get PDF
    Noodles available in numerous brands and variants have become popular nowadays in the Indian markets. However, there were setbacks for this industry owing to the blacklist of a few brands by the state authorities and the consequent boycott of those brands by the general public. In this context, this study intends to investigate the factors which affect the purchase decision of consumers of Packaged Foods, especially the Ready-To-Cook noodles. The consumption patterns of the consumers in terms of taste, convenience and availability are also examined.  This exploratory research has been done among the Bengaluru youth in the age group of 20-30 years, and the influence of five major players in this segment - Maggi, Yippee, Ching’s, Top Ramen and Knorr are explored. Analysis of variance (ANOVA) is used to understand the differences and variations among the brands. The paper concludes that Ready-To-Cook noodles has not yet got the acknowledgement and acceptance among the youth, though there is an immense potential for growth in this segment in the future. Critical factors that influence the buying decision of consumers are convenience, taste and availability. Consumers believe that noodles category should include more variety at reasonable and affordable prices, which will cater to the demand of this product in future. However, the brands in this study perform satisfactorily on the factors selected. And Maggi is perceived to be the best brand of noodle in terms of price, and Knorr in terms of its variety

    Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. <it>In vitro </it>and <it>ex vivo </it>cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer.</p> <p>Results</p> <p>Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition.</p> <p>Conclusion</p> <p>The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.</p

    Summary of the Activities of the Working Group I on High Energy and Collider Physics

    Get PDF
    This is a summary of the projects undertaken by the Working Group I on High Energy Collider Physics at the Eighth Workshop on High Energy Physics Phenomenology (WHEPP8) held at the Indian Institute of Technology, Mumbai, January 5-16, 2004. The topics covered are (i) Higgs searches (ii) supersymmetry searches (iii) extra dimensions and (iv) linear collider.Comment: summary of Working Group I at the Eighth Workshop on High Energy Physics Phenomenology (WHEPP8), I.I.T., Mumbai, January 5-16, 200

    Neutrino Anomalies in Gauge Mediated Model with Trilinear R violation

    Get PDF
    The structure of neutrino masses and mixing resulting from trilinear RR violating interactions is studied in the presence of the gauge mediated supersymmetry breaking. Neutrino masses arise in this model at tree level through the RG-induced vacuum expectation values of the sneutrinos and also through direct contribution at 1-loop. The relative importance of these contributions is determined by the values of the strong and weak coupling constants. In case of purely λ\lambda' couplings, the tree contribution dominates over the 1-loop diagram. In this case, one simultaneously obtains atmospheric neutrino oscillations and quasi-vacuum oscillations of the solar neutrinos if all the \l' couplings are assumed to be of similar magnitudes. If R parity violation arises from the trilinear \l couplings, then the loop induced contribution dominates over the tree level. One cannot simultaneously explain the solar and atmospheric deficit in this case if all the \l couplings are of similar magnitude. This however becomes possible with hierarchical \l and we give a specific example of this.Comment: 26 pages Latex, 2 figures, certain sections rewritten, improved discussion about derivations added. To appear in Physical Review

    Can fungal biopesticides control malaria?

    Get PDF
    Recent research has raised the prospect of using insect fungal pathogens for the control of vector-borne diseases such as malaria. In the past, microbial control of insect pests in both medical and agricultural sectors has generally had limited success. We propose that it may now be possible to produce a cheap, safe and green tool for the control of malaria which, in contrast to most chemical insecticides, will not eventually be rendered useless by resistance evolution. Realising this potential will require lateral thinking by biologists, technologists and development agencie

    Evaluation of Parameters Affecting <i>Agrobacterium</i>-Mediated Transient Gene Expression in Industrial Hemp (<i>Cannabis sativa</i> L.)

    No full text
    Industrial hemp Cannabis sativa L. is an economically important crop mostly grown for its fiber, oil, and seeds. Due to its increasing applications in the pharmaceutical industry and a lack of knowledge of gene functions in cannabinoid biosynthesis pathways, developing an efficient transformation platform for the genetic engineering of industrial hemp has become necessary to enable functional genomic and industrial application studies. A critical step in the development of Agrobacterium tumefaciens-mediated transformation in the hemp genus is the establishment of optimal conditions for T-DNA gene delivery into different explants from which whole plantlets can be regenerated. As a first step in the development of a successful Agrobacterium tumefaciens-mediated transformation method for hemp gene editing, the factors influencing the successful T-DNA integration and expression (as measured by transient β-glucuronidase (GUS) and Green Florescent Protein (GFP) expression) were investigated. In this study, the parameters for an agroinfiltration system in hemp, which applies to the stable transformation method, were optimized. In the present study, we tested different explants, such as 1- to 3-week-old leaves, cotyledons, hypocotyls, root segments, nodal parts, and 2- to 3-week-old leaf-derived calli. We observed that the 3-week-old leaves were the best explant for transient gene expression. Fully expanded 2- to 3-week-old leaf explants, in combination with 30 min of immersion time, 60 µM silver nitrate, 0.5 µM calcium chloride, 150 µM natural phenolic compound acetosyringone, and a bacterial density of OD600nm = 0.4 resulted in the highest GUS and GFP expression. The improved method of genetic transformation established in the present study will be useful for the introduction of foreign genes of interest, using the latest technologies such as genome editing, and studying gene functions that regulate secondary metabolites in hemp

    Unsteady flamelet response in the near field of high-reynolds-number jets

    No full text
    In this work, we perform numerical studies of the unsteady response of laminar diffusion flamelets relevant to the near field (x=d < 30) of high-Reynolds-number gaseous-fuel jets that are injected into high-pressure and hightemperature chambers.Alarge-eddy simulation database of a 70,000-Reynolds-number variable-density round jet is employed to compute turbulent time histories of the scalar dissipation rate in the near field. With this information, studies of diffusion flamelets subjected to scalar dissipation rate fluctuations are performed in which the unsteady flamelet equations are solved with the assumption of unity species Lewis number. The commonly employed diesel fuel surrogate n-heptane is chosen as the fuel, and its oxidation chemistry is modeled by a kinetic mechanism incorporating 159 species among 1540 reaction steps. Results show that in the simulated near field of the 70,000- Reynolds-number jet, transient temporary flame-weakening events followed by flame recovery are probable. Although the flame temperature, major species, and pollutants such as unburned hydrocarbons show a relatively fast response and good agreement with steady flamelet predictions, the pollutant, nitric oxide, responds with a significant phase lag, rendering steady flamelets inadequate. The analysis is extrapolated to higher-Reynolds-number jets with higher-intensity scalar dissipation rate fluctuations, in which transient flame-extinction/reignition events are observed. The applicability of steady flamelets to predict temperature and species responses during extinction/ reignition is assessed, and the implications of extinction/reignition events for jet near-field phenomena, such as flame liftoff, are explored.Rishikesh Venugopal and John Abraha

    Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique

    No full text
    The limited thermoelectric performance of p-type Higher Manganese Silicides (HMS) in terms of their low figure-of-merit (ZT), which is far below unity, is the main bottle-neck for realising an efficient HMS based thermoelectric generator, which has been recognized as the most promising material for harnessing waste-heat in the mid-temperature range, owing to its thermal stability, earth-abundant and environmentally friendly nature of its constituent elements. We report a significant enhancement in the thermoelectric performance of nanostructured HMS synthesized using rapid solidification by optimizing the cooling rates during melt-spinning followed by spark plasma sintering of the resulting melt-spun ribbons. By employing this experimental strategy, an unprecedented ZT similar to 0.82 at 800 K was realized in spark plasma sintered 5 at% Al-doped MnSi1.73 HMS, melt spun at an optimized high cooling rate of similar to 2 x 10(7) K s(-1). This enhancement in ZT represents a similar to 25% increase over the best reported values thus far for HMS and primarily originates from a nano-crystalline microstructure consisting of a HMS matrix (20-40 nm) with excess Si (3-9 nm) uniformly distributed in it. This nanostructure, resulting from the high cooling rates employed during the melt-spinning of HMS, introduces a high density of nano-crystallite boundaries in a wide spectrum of nano-scale dimensions, which scatter the low-to-mid-wavelength heat-carrying phonons. This abundant phonon scattering results in a significantly reduced thermal conductivity of similar to 1.5 W m(-1) K-1 at 800 K, which primarily contributes to the enhancement in ZT
    corecore