31 research outputs found

    Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation.

    No full text
    To explore the molecular basis of X chromosome inactivation, we have examined the human locus for glucose-6-phosphate dehydro-genase (G6PD) in various human tissues. Studies of DNA from males and females and from somatic cell hybrids with active or inactive X chromosomes, show that two remarkably dense clusters of CpG dinucleotides in the 3' coding sequences are hypomethylated in active G6PD genes but extensively methylated in inactive ones. Reacquisition of G6PD activity, either spontaneous or induced by 5-azacytidine, is accompanied by demethylation of both clusters; however, the clusters remain methylated in reactivants that express HPRT but not G6PD. Our observations implicate these 3' CpG clusters in the transcription of G6PD and in maintenance of dosage compensation for X linked housekeeping genes

    Importance of Passive Diffusion in the Uptake of Polychlorinated Biphenyls by Phagotrophic Protozoa

    Get PDF
    Unicellular protozoan grazers represent a size class of organisms where a transition in the mechanism of chlorobiphenyl (CB) introduction, from diffusion through surface membranes to ingestion of contaminated prey, could occur. This study compares the relative importance of these two processes in the overall uptake of polychlorinated biphenyls by protists. Uptake rates and steady-state concentrations were compared in laboratory cultures of grazing and nongrazing protozoa. These experiments were conducted with a 10-μm marine scuticociliate (Uronema sp.), bacterial prey (Halomonas halodurans), and a suite of 21 CB congeners spanning a range of aqueous solubilities. The dominant pathway of CB uptake by both grazing and nongrazing protozoa was diffusion. Organic-carbon-normalized CB concentrations (in the protozoan cell) were equivalent in grazing and nongrazing protozoa for all congeners studied. Rate constants for uptake into and loss from the protozoan cell were independently determined by using [3,3′,4,4′-(14)C]tetrachlorobiphenyl (IUPAC no. 77), 0.38 ± 0.03 min(−1) and (1.1 ± 0.1) × 10(−5) (g of organic carbon)(−1) min(−1), respectively. Magnitudes of the uptake and loss processes were calculated and compared by using a numerical model. The model result was consistent with data from the bioaccumulation experiment and supported the hypothesis that diffusive uptake is faster than ingestive uptake in phagotrophic unicellular protozoa
    corecore