39 research outputs found

    Role of potassium and calcium channels in sevoflurane-mediated vasodilation in the foeto-placental circulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.</p> <p>Methods</p> <p>Quadruplicate <it>ex vivo </it>human chorionic plate arterial rings were used in all studies. <b><it>Series 1 and 2 </it></b>examined the role of the K<sup>+ </sup>channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K<sup>+ </sup>(K<sub>Ca++</sub>) channels (<b><it>Series 1A+B</it></b>) or glibenclamide, which blocks the ATP sensitive K<sup>+ </sup>(K<sub>ATP</sub>) channel (<b><it>Series 2</it></b>), modulated sevoflurane-mediated vasodilation. <b><it>Series 3 – 5 </it></b>examined the role of the Ca<sup>++ </sup>channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca<sup>++ </sup>channel (<b><it>Series 3</it></b>), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca<sup>++ </sup>channels (<b><it>Series 4A+B</it></b>), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca<sup>++ </sup>channel (<b><it>Series 5A+B</it></b>), modulated sevoflurane-mediated vasodilation.</p> <p>Results</p> <p>Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the K<sub>Ca++ </sub>and K<sub>ATP </sub>channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K<sup>+ </sup>channels. Blockade of the voltage-operated Ca<sup>++</sup>channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca<sup>++</sup>channels did not alter sevoflurane vasodilation.</p> <p>Conclusion</p> <p>Sevoflurane appears to block chorionic arterial K<sub>Ca++ </sub>and K<sub>ATP </sub>channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the <it>in vitro </it>foeto-placental circulation.</p

    Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

    Get PDF
    We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e [subscript n] and v [subscript n] , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ [subscript 0] ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.Spain. Ministerio de Educación y Ciencia (MEC) (Project FIS2010-21924-C02-02

    Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method

    No full text
    A non-linear analysis of the temporal evolution of finite, two-dimensional disturbances is conducted for plane Poiseuille and Couette flows of viscoelastic fluids. A fully-spectral method of solution is used with a stream-function formulation of the problem. The upper-convected Maxwell (UCM), Oldroyd-B and Giesekus models are considered. The bifurcation of solutions for increasing elasticity is investigated both in the high and low Reynolds number regimes. The transition mechanism is discussed in terms of both the transient linear growth of misfit disturbances due to non-normality, and their possible saturation into finite-amplitude periodic solutions due to non-linear effects. (C) 2002 Elsevier Science B.V. All rights reserved

    Diabetes mellitus- and cooling-induced bladder contraction: an in vitro study

    No full text

    On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear

    No full text
    The non-linear response of polymeric liquids observed experimentally in large amplitude oscillatory shear (LAOS) is generally characterized by the presence of odd harmonics of the excitation frequency in the Fourier spectrum for the shear stress. Even harmonics of relatively smaller amplitude have also been observed, whose appearance is usually attributed to wall slip phenomena. In the: present work, we show that wall slip is not a necessary condition for the occurrence of even harmonics. To this end, we perform a non-linear study of planar LAOS flow between two infinite parallel plates using either a monotone or non-monotone viscoelastic constitutive equation (i.e., respectively, the Giesekus and Johnson-Segalman models). The analysis allows for spatially non-homogeneous velocity and stress fields. We assume no-slip boundary conditions, and investigate the combined effects of inertia, elasticity, and shear thinning by means of spectral methods. A regular perturbation analysis is also conducted in the inertialess monotone case. Results for the Giesekus model show that combination of elasticity and shear thinning yields transient even harmonics in shear stress whose life span and intensity are considerably increased by inertia. Furthermore, the one-dimensional flow is unstable to finite two-dimensional perturbations under inertia and at high elasticity. This results in the development of secondary flows and saturation of even harmonics into small but finite values. Simulations for the non-monotone Johnson-Segalman model predict even harmonics of relatively larger amplitude that settle in dynamic equilibrium. Furthermore, the fluid's response is quasi-periodic with the appearance of incommensurate frequencies. (C) 2004 Elsevier B.V. All rights reserved
    corecore